Justus Kuhnigk, T. Standau, D. Dörr, Christian Brütting, V. Altstädt, H. Ruckdäschel
{"title":"Progress in the development of bead foams – A review","authors":"Justus Kuhnigk, T. Standau, D. Dörr, Christian Brütting, V. Altstädt, H. Ruckdäschel","doi":"10.1177/0021955X221087603","DOIUrl":null,"url":null,"abstract":"For a long time, the number of available bead foam variants limited to standard polymers which restricted their functionality mainly to packaging, thermal insulation (e.g. in construction) and shock absorption (e.g. in transportation). In particular, standard polymers such as expanded polystyrene, expanded polyethylene and expanded polypropylene were used for components requiring good insulating properties and high energy absorption at low cost. Mainly since the last two decades, new polymer variants have found their way into the world of bead foams and are currently adding further functionalities, such as sustainability, flame retardancy, increased thermal stability and enhanced mechanical performance (e.g. improvements in energy absorption and impact resistance). Versatile fields of application open up, revolutionizing both industry and design sectors. This review article emphasizes the special development progress of new bead foam variants and their processing technologies. Upcoming opportunities of digital methods for modelling and simulation are highlighted.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"15 4 1","pages":"707 - 735"},"PeriodicalIF":3.2000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955X221087603","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 12
Abstract
For a long time, the number of available bead foam variants limited to standard polymers which restricted their functionality mainly to packaging, thermal insulation (e.g. in construction) and shock absorption (e.g. in transportation). In particular, standard polymers such as expanded polystyrene, expanded polyethylene and expanded polypropylene were used for components requiring good insulating properties and high energy absorption at low cost. Mainly since the last two decades, new polymer variants have found their way into the world of bead foams and are currently adding further functionalities, such as sustainability, flame retardancy, increased thermal stability and enhanced mechanical performance (e.g. improvements in energy absorption and impact resistance). Versatile fields of application open up, revolutionizing both industry and design sectors. This review article emphasizes the special development progress of new bead foam variants and their processing technologies. Upcoming opportunities of digital methods for modelling and simulation are highlighted.
期刊介绍:
The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.