Y. Zhou, Y. Sha, X. X. Jiang, Q. Sun, Y. S. Wang, J. Tian
{"title":"Gas generation characteristics of transformer oil under combined AC-DC voltages in the process of arcing","authors":"Y. Zhou, Y. Sha, X. X. Jiang, Q. Sun, Y. S. Wang, J. Tian","doi":"10.1109/CEIDP.2011.6232757","DOIUrl":null,"url":null,"abstract":"As an important equipment, convertor transformer plays a crucial role in ultra high voltage direct current (UHVDC). How to improve the safety running level of convertor transformers is a key problem to be solved imminently. Compared with AC power transformers, the valve side windings of convertor transformers will endure combined AC-DC voltage. In these conditions, the gas generation characteristics in oil for convertor transformers will be more complicated. In this paper, according to the operational principle of convertor transformers, the ratios between AC and DC voltage on valve side windings in the star connection and triangular connection were 77.1% and 83.7% respectively. Based on the above results, 65 kV peak voltages in 5 different AC and DC voltage forms were applied to the needle-plate electrode model for 2 hours. The discharge current and voltage waveforms were recorded and the arc current pulses had a short lasting time about 1.2 ms. Then the mean discharge energy was calculated at 0.1 to 0.3 J. At the same time, the gas generation characteristics under combined AC-DC voltage were obtained by using the gas chromatographic analysis method. The variations of amounts and generation rates of characteristic gases were measured with time during 2 hours, which provided fault judgment criterions and experimental experience. The experimental results showed that the amounts and generation rates of H2, C2H2 and total hydrocarbon under the pure DC voltage or combined AC-DC voltage were more than those under the pure AC voltage. It might illustrate the fact that effects of different voltage forms would lead to different gas generation characteristics could not be ignored.","PeriodicalId":6317,"journal":{"name":"2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","volume":"38 1","pages":"718-721"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Annual Report Conference on Electrical Insulation and Dielectric Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2011.6232757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
As an important equipment, convertor transformer plays a crucial role in ultra high voltage direct current (UHVDC). How to improve the safety running level of convertor transformers is a key problem to be solved imminently. Compared with AC power transformers, the valve side windings of convertor transformers will endure combined AC-DC voltage. In these conditions, the gas generation characteristics in oil for convertor transformers will be more complicated. In this paper, according to the operational principle of convertor transformers, the ratios between AC and DC voltage on valve side windings in the star connection and triangular connection were 77.1% and 83.7% respectively. Based on the above results, 65 kV peak voltages in 5 different AC and DC voltage forms were applied to the needle-plate electrode model for 2 hours. The discharge current and voltage waveforms were recorded and the arc current pulses had a short lasting time about 1.2 ms. Then the mean discharge energy was calculated at 0.1 to 0.3 J. At the same time, the gas generation characteristics under combined AC-DC voltage were obtained by using the gas chromatographic analysis method. The variations of amounts and generation rates of characteristic gases were measured with time during 2 hours, which provided fault judgment criterions and experimental experience. The experimental results showed that the amounts and generation rates of H2, C2H2 and total hydrocarbon under the pure DC voltage or combined AC-DC voltage were more than those under the pure AC voltage. It might illustrate the fact that effects of different voltage forms would lead to different gas generation characteristics could not be ignored.