Optimization of numerical models through instrumentation data integration: Digital twin models for dams

IF 0.9 Q3 MATHEMATICS, APPLIED Computational and Mathematical Methods Pub Date : 2021-10-16 DOI:10.1002/cmm4.1205
Eduardo R. Conde López, Miguel Ángel Toledo Municio, Eduardo Salete Casino
{"title":"Optimization of numerical models through instrumentation data integration: Digital twin models for dams","authors":"Eduardo R. Conde López,&nbsp;Miguel Ángel Toledo Municio,&nbsp;Eduardo Salete Casino","doi":"10.1002/cmm4.1205","DOIUrl":null,"url":null,"abstract":"<p>Dam safety is a relevant aspect in our society due to the importance of its functions (power generation, water supply, lamination of floods) and due to the potentially catastrophic consequences of a serious breakdown or breakage. Dam safety analyses are fundamentally based on behavior models, which are idealizations of the dam-foundation that allow us to calculate the dam's response to a certain combination of actions. The comparison of this response with the real one, measured by the auscultation or survey devices, is the main element to determine the safety status of the structure. To improve this analysis, it is necessary to increase the accuracy of the numerical models obtaining a digital twin that allows knowing, in a faithful way, how the structure is going to work in normal and extreme situations.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1205","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Dam safety is a relevant aspect in our society due to the importance of its functions (power generation, water supply, lamination of floods) and due to the potentially catastrophic consequences of a serious breakdown or breakage. Dam safety analyses are fundamentally based on behavior models, which are idealizations of the dam-foundation that allow us to calculate the dam's response to a certain combination of actions. The comparison of this response with the real one, measured by the auscultation or survey devices, is the main element to determine the safety status of the structure. To improve this analysis, it is necessary to increase the accuracy of the numerical models obtaining a digital twin that allows knowing, in a faithful way, how the structure is going to work in normal and extreme situations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过仪器数据集成优化数值模型:水坝的数字孪生模型
大坝安全是我们社会的一个相关方面,因为它的功能(发电、供水、防洪)的重要性,以及由于严重的崩溃或断裂的潜在灾难性后果。大坝安全分析基本上是基于行为模型的,这是大坝基础的理想化,使我们能够计算大坝对特定组合行动的反应。这种反应与实际反应的比较,通过听诊或测量设备测量,是确定结构安全状态的主要因素。为了改进这一分析,有必要提高数值模型的准确性,获得一个数字孪生,以一种忠实的方式了解结构在正常和极端情况下的工作方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
A Mathematical Analysis of the Impact of Immature Mosquitoes on the Transmission Dynamics of Malaria Parameter-Uniform Convergent Numerical Approach for Time-Fractional Singularly Perturbed Partial Differential Equations With Large Time Delay Mortality Prediction in COVID-19 Using Time Series and Machine Learning Techniques On the Limitations of Univariate Grey Prediction Models: Findings and Failures Generalized Confidence Interval for the Difference Between Percentiles of Birnbaum–Saunders Distributions and Its Application to PM2.5 in Thailand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1