Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists

Oliver Gasser, Quirin Scheitle, Pawel Foremski, Qasim Lone, Maciej Korczyński, Stephen D. Strowes, Luuk Hendriks, G. Carle
{"title":"Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists","authors":"Oliver Gasser, Quirin Scheitle, Pawel Foremski, Qasim Lone, Maciej Korczyński, Stephen D. Strowes, Luuk Hendriks, G. Carle","doi":"10.1145/3278532.3278564","DOIUrl":null,"url":null,"abstract":"Network measurements are an important tool in understanding the Internet. Due to the expanse of the IPv6 address space, exhaustive scans as in IPv4 are not possible for IPv6. In recent years, several studies have proposed the use of target lists of IPv6 addresses, called IPv6 hitlists. In this paper, we show that addresses in IPv6 hitlists are heavily clustered. We present novel techniques that allow IPv6 hitlists to be pushed from quantity to quality. We perform a longitudinal active measurement study over 6 months, targeting more than 50 M addresses. We develop a rigorous method to detect aliased prefixes, which identifies 1.5 % of our prefixes as aliased, pertaining to about half of our target addresses. Using entropy clustering, we group the entire hitlist into just 6 distinct addressing schemes. Furthermore, we perform client measurements by leveraging crowdsourcing. To encourage reproducibility in network measurement research and to serve as a starting point for future IPv6 studies, we publish source code, analysis tools, and data.","PeriodicalId":20640,"journal":{"name":"Proceedings of the Internet Measurement Conference 2018","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Internet Measurement Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3278532.3278564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Network measurements are an important tool in understanding the Internet. Due to the expanse of the IPv6 address space, exhaustive scans as in IPv4 are not possible for IPv6. In recent years, several studies have proposed the use of target lists of IPv6 addresses, called IPv6 hitlists. In this paper, we show that addresses in IPv6 hitlists are heavily clustered. We present novel techniques that allow IPv6 hitlists to be pushed from quantity to quality. We perform a longitudinal active measurement study over 6 months, targeting more than 50 M addresses. We develop a rigorous method to detect aliased prefixes, which identifies 1.5 % of our prefixes as aliased, pertaining to about half of our target addresses. Using entropy clustering, we group the entire hitlist into just 6 distinct addressing schemes. Furthermore, we perform client measurements by leveraging crowdsourcing. To encourage reproducibility in network measurement research and to serve as a starting point for future IPv6 studies, we publish source code, analysis tools, and data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展中的集群:理解和公正的IPv6热门列表
网络测量是理解互联网的一个重要工具。由于IPv6地址空间的扩展,像IPv4那样的穷举扫描在IPv6中是不可能的。近年来,一些研究提出使用IPv6地址的目标列表,称为IPv6命中列表。在本文中,我们展示了IPv6命中列表中的地址是高度集群的。我们提出了新颖的技术,允许IPv6热门列表从数量推到质量。我们进行了为期6个月的纵向主动测量研究,目标是超过50万个地址。我们开发了一种严格的方法来检测别名前缀,该方法识别出1.5%的前缀为别名,与大约一半的目标地址有关。使用熵聚类,我们将整个命中列表分为6个不同的寻址方案。此外,我们通过利用众包来执行客户评估。为了鼓励网络测量研究的可重复性,并作为未来IPv6研究的起点,我们发布了源代码、分析工具和数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Permission Requests in Mobile Apps A Look at the ECS Behavior of DNS Resolvers RPKI is Coming of Age: A Longitudinal Study of RPKI Deployment and Invalid Route Origins Scanning the Scanners: Sensing the Internet from a Massively Distributed Network Telescope Learning Regexes to Extract Router Names from Hostnames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1