Enhancing predictive precision of dominant height projection equations for eucalypts by incorporating rainfall and temperature terms

B. G. Mandigora, D. Drew
{"title":"Enhancing predictive precision of dominant height projection equations for eucalypts by incorporating rainfall and temperature terms","authors":"B. G. Mandigora, D. Drew","doi":"10.2989/20702620.2022.2148587","DOIUrl":null,"url":null,"abstract":"Short-rotation forest stands are sensitive to extreme climate conditions during their growth period, which presents a challenge to managing forests and modelling forest growth in a constantly changing climate. We developed climate-sensitive dominant height models for the Eucalyptus grandis × Eucalyptus urophylla hybrid (GU) in South Africa. In addition, dominant height growth under three future climate scenarios was investigated. The Chapman– Richards and Gompertz models, modified by within-rotation and long-term climate data, were used to model dominant height. Model testing using independent permanent sample plot data showed that the Gompertz model modified by within-rotation bioclimatic data performed better than the other models. The climate-modified Gompertz model was used to project height growth for eucalypt stands under three future climate scenarios; ‘No change’, ‘RCP4.5’ and ‘RCP8.5’, for two periods: 2050 (years 2040 to 2060); and 2070 (years 2061 to 2080). Climate change might decelerate dominant height growth in the study area, therefore forest management plans need to be adapted accordingly.","PeriodicalId":21939,"journal":{"name":"Southern Forests: a Journal of Forest Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Southern Forests: a Journal of Forest Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2989/20702620.2022.2148587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Short-rotation forest stands are sensitive to extreme climate conditions during their growth period, which presents a challenge to managing forests and modelling forest growth in a constantly changing climate. We developed climate-sensitive dominant height models for the Eucalyptus grandis × Eucalyptus urophylla hybrid (GU) in South Africa. In addition, dominant height growth under three future climate scenarios was investigated. The Chapman– Richards and Gompertz models, modified by within-rotation and long-term climate data, were used to model dominant height. Model testing using independent permanent sample plot data showed that the Gompertz model modified by within-rotation bioclimatic data performed better than the other models. The climate-modified Gompertz model was used to project height growth for eucalypt stands under three future climate scenarios; ‘No change’, ‘RCP4.5’ and ‘RCP8.5’, for two periods: 2050 (years 2040 to 2060); and 2070 (years 2061 to 2080). Climate change might decelerate dominant height growth in the study area, therefore forest management plans need to be adapted accordingly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过纳入降雨和温度项,提高桉树优势高度投影方程的预测精度
短轮伐林分在其生长期对极端气候条件很敏感,这对在不断变化的气候下管理森林和模拟森林生长提出了挑战。本文建立了南非大桉×尾叶桉杂交品种(GU)的气候敏感优势高度模型。此外,还研究了未来3种气候情景下的优势高度增长。查普曼-理查兹模式和Gompertz模式经旋转内和长期气候资料修正后,用于模拟优势高度。利用独立永久样地数据进行的模型检验表明,经轮内生物气候数据修正的Gompertz模型优于其他模型。利用气候修正的Gompertz模型预测了未来3种气候情景下桉树林分的高度增长;“不变”,“RCP4.5”和“RCP8.5”,两个时期:2050年(2040年至2060年);2070年(2061年至2080年)。气候变化可能会减缓研究区优势高度的生长,因此需要相应地调整森林管理计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Changes in anatomical characteristics of Falcataria moluccana wood due to Uromycladium tepperianum infection Changes in protein expression in Acacia mearnsii De Wild (black wattle) as a result of exposure to frost-inducing temperatures Evidence-based global yield benchmarks in unthinned industrial plantation eucalypts Biomass production and nutritional efficiency in short rotation eucalypt clone plantations for energy in north-east Brazil Growth and adaptability of provenances and progenies of Pinus maximinoi H.E.Moore in northern Mozambique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1