{"title":"Cosmological bound on neutrino masses in the light of \nH0\n tension","authors":"Toyokazu Sekiguchi, Tomo Takahashi","doi":"10.1103/PHYSREVD.103.083516","DOIUrl":null,"url":null,"abstract":"Although cosmic microwave background (CMB) is the most powerful cosmological probe of neutrino masses, it is in trouble with local direct measurements of $H_0$, which is called the $H_0$ tension. Since neutrino masses are correlated with $H_0$ in CMB, one can expect the cosmological bound on neutrino masses would be much affected by the $H_0$ tension. We investigate what impact this tension brings to cosmological bound on neutrino masses by assuming a model with modified recombination which has been shown to resolve the tension. We argue that constraints on neutrino masses become significantly weaker in models where the $H_0$ tension can be resolved.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.083516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Although cosmic microwave background (CMB) is the most powerful cosmological probe of neutrino masses, it is in trouble with local direct measurements of $H_0$, which is called the $H_0$ tension. Since neutrino masses are correlated with $H_0$ in CMB, one can expect the cosmological bound on neutrino masses would be much affected by the $H_0$ tension. We investigate what impact this tension brings to cosmological bound on neutrino masses by assuming a model with modified recombination which has been shown to resolve the tension. We argue that constraints on neutrino masses become significantly weaker in models where the $H_0$ tension can be resolved.