Fanout decomposition dataflow optimizations for FPGA-based Sparse LU factorization

Siddhartha, Nachiket Kapre
{"title":"Fanout decomposition dataflow optimizations for FPGA-based Sparse LU factorization","authors":"Siddhartha, Nachiket Kapre","doi":"10.1109/FPT.2014.7082787","DOIUrl":null,"url":null,"abstract":"Performance of FPGA-based token dataflow architectures is often limited by the long tail distribution of parallelism in the compute paths of the dataflow graphs. This is known to limit speedup of dataflow processing of Sparse LU factorization to only 3-10x over CPUs. One reason behind the limitations is the serialization penalty of processing high-fanout nodes in the dataflow graph on traditional dataflow processing architectures. In this paper, we show how to perform one-time static fanout decomposition and selective node replication transformations to input dataflow graphs. These transformations are one-time static compute costs that are typically amortized over millions of iterations. For dataflow graphs extracted for sparse LU factorization, we demonstrate up to 2.3x speedup (1.2x geomean average) with this technique across a range of benchmark problems.","PeriodicalId":6877,"journal":{"name":"2014 International Conference on Field-Programmable Technology (FPT)","volume":"78 1","pages":"252-255"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2014.7082787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Performance of FPGA-based token dataflow architectures is often limited by the long tail distribution of parallelism in the compute paths of the dataflow graphs. This is known to limit speedup of dataflow processing of Sparse LU factorization to only 3-10x over CPUs. One reason behind the limitations is the serialization penalty of processing high-fanout nodes in the dataflow graph on traditional dataflow processing architectures. In this paper, we show how to perform one-time static fanout decomposition and selective node replication transformations to input dataflow graphs. These transformations are one-time static compute costs that are typically amortized over millions of iterations. For dataflow graphs extracted for sparse LU factorization, we demonstrate up to 2.3x speedup (1.2x geomean average) with this technique across a range of benchmark problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于fpga稀疏LU分解的扇出分解数据流优化
基于fpga的令牌数据流架构的性能通常受到数据流图计算路径中并行性的长尾分布的限制。众所周知,这将稀疏LU分解的数据流处理的加速限制在cpu上的3-10倍。限制背后的一个原因是,在传统的数据流处理架构上处理数据流图中的高扇出节点会造成序列化损失。在本文中,我们展示了如何执行一次性静态扇出分解和选择性节点复制转换来输入数据流图。这些转换是一次性的静态计算成本,通常在数百万次迭代中分摊。对于为稀疏LU分解提取的数据流图,我们在一系列基准测试问题中展示了使用该技术高达2.3倍的加速(1.2倍的几何平均)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Message from the General Chair and Program Co-Chairs Accelerator-in-Switch: A Novel Cooperation Framework for FPGAs and GPUs FPGA Accelerated HPC and Data Analytics Novel Neural Network Applications on New Python Enabled Platforms High-level synthesis - the right side of history
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1