Tianchi Zhang, Jian Zhang, Jing Zhang, Melvyn L. Smith
{"title":"Two-Step Modified Nash Equilibrium Method for Medical Image Segmentation Based on an Improved C-V Model","authors":"Tianchi Zhang, Jian Zhang, Jing Zhang, Melvyn L. Smith","doi":"10.1166/JMIHI.2018.2521","DOIUrl":null,"url":null,"abstract":"One of the most established region-based segmentation methods is the region based C-V model. This method formulates the image segmentation problem as a level set or improved level set clustering problem. However, the existing level set C-V model fails to perform well in the presence\n of noisy and incomplete data or when there is similarity between the objects and background, especially for clustering or segmentation tasks in medical images where objects appear vague and poorly contrasted in greyscale. In this paper, we modify the level set C-V model using a two-step modified\n Nash equilibrium approach. Firstly, a standard deviation using an entropy payoff approach is employed and secondly a two-step similarity clustering based approach is applied to the modified Nash equilibrium. One represents a maximum similarity within the clustered regions and the other the\n minimum similarity between the clusters. Finally, an improved C-V model based on a two-step modified Nash equilibrium is proposed to smooth the object contour during the image segmentation. Experiments demonstrate that the proposed method has good performance for segmenting noisy and poorly\n contrasting regions within medical images.","PeriodicalId":49032,"journal":{"name":"Journal of Medical Imaging and Health Informatics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/JMIHI.2018.2521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most established region-based segmentation methods is the region based C-V model. This method formulates the image segmentation problem as a level set or improved level set clustering problem. However, the existing level set C-V model fails to perform well in the presence
of noisy and incomplete data or when there is similarity between the objects and background, especially for clustering or segmentation tasks in medical images where objects appear vague and poorly contrasted in greyscale. In this paper, we modify the level set C-V model using a two-step modified
Nash equilibrium approach. Firstly, a standard deviation using an entropy payoff approach is employed and secondly a two-step similarity clustering based approach is applied to the modified Nash equilibrium. One represents a maximum similarity within the clustered regions and the other the
minimum similarity between the clusters. Finally, an improved C-V model based on a two-step modified Nash equilibrium is proposed to smooth the object contour during the image segmentation. Experiments demonstrate that the proposed method has good performance for segmenting noisy and poorly
contrasting regions within medical images.
期刊介绍:
Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas. As an example, the Distributed Diagnosis and Home Healthcare (D2H2) aims to improve the quality of patient care and patient wellness by transforming the delivery of healthcare from a central, hospital-based system to one that is more distributed and home-based. Different medical imaging modalities used for extraction of information from MRI, CT, ultrasound, X-ray, thermal, molecular and fusion of its techniques is the focus of this journal.