A Possible Explanation of the Proton Radius Puzzle Based on the Second Flavor of Muonic Hydrogen Atoms

E. Oks
{"title":"A Possible Explanation of the Proton Radius Puzzle Based on the Second Flavor of Muonic Hydrogen Atoms","authors":"E. Oks","doi":"10.3390/foundations2040062","DOIUrl":null,"url":null,"abstract":"The proton radius puzzle is one of the most fundamental challenges of modern physics. Before the year 2010, the proton charge radius rp was determined by the spectroscopic method, relying on the electron energy levels in hydrogen atoms, and by the elastic scattering of electrons on protons. In 2010, and then in 2013, two research teams determined rp from the experiment on muonic hydrogen atoms and they claimed rp to be by about 4% smaller than it was found from the experiments with electronic hydrogen atoms. Since then, several research groups performed corresponding experiments with electronic hydrogen atoms and obtained contradictory results: some of them claimed that they found the same value of rp as from the muonic hydrogen experiments, while others reconfirmed the larger value of rp. The conclusion of the latest papers (including reviews) is that the puzzle is not resolved yet. In the present paper, we bring to the attention of the research community, dealing with the proton radius puzzle, the contributing factor never taken into account in any previous calculations. This factor has to do with the hydrogen atoms of the second flavor, whose existence is confirmed in four different types of atomic experiments. We present a relatively simple model illustrating the role of this factor. We showed that disregarding the effect of even a relatively small admixture of the second flavor of muonic hydrogen atoms to the experimental gas of muonic hydrogen atoms could produce the erroneous result that the proton charge radius is by about 4% smaller than its actual value, so that the larger out of the two disputed values of the proton charge radius could be, in fact, correct.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations2040062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The proton radius puzzle is one of the most fundamental challenges of modern physics. Before the year 2010, the proton charge radius rp was determined by the spectroscopic method, relying on the electron energy levels in hydrogen atoms, and by the elastic scattering of electrons on protons. In 2010, and then in 2013, two research teams determined rp from the experiment on muonic hydrogen atoms and they claimed rp to be by about 4% smaller than it was found from the experiments with electronic hydrogen atoms. Since then, several research groups performed corresponding experiments with electronic hydrogen atoms and obtained contradictory results: some of them claimed that they found the same value of rp as from the muonic hydrogen experiments, while others reconfirmed the larger value of rp. The conclusion of the latest papers (including reviews) is that the puzzle is not resolved yet. In the present paper, we bring to the attention of the research community, dealing with the proton radius puzzle, the contributing factor never taken into account in any previous calculations. This factor has to do with the hydrogen atoms of the second flavor, whose existence is confirmed in four different types of atomic experiments. We present a relatively simple model illustrating the role of this factor. We showed that disregarding the effect of even a relatively small admixture of the second flavor of muonic hydrogen atoms to the experimental gas of muonic hydrogen atoms could produce the erroneous result that the proton charge radius is by about 4% smaller than its actual value, so that the larger out of the two disputed values of the proton charge radius could be, in fact, correct.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于介子氢原子第二味的质子半径谜题的可能解释
质子半径之谜是现代物理学中最基本的挑战之一。在2010年之前,质子电荷半径rp是通过光谱学方法确定的,依赖于氢原子中的电子能级,并通过电子在质子上的弹性散射。2010年和2013年,两个研究小组通过对介子氢原子的实验确定了rp,他们声称rp比电子氢原子实验发现的rp小4%左右。此后,几个研究小组对电子氢原子进行了相应的实验,得到了相互矛盾的结果:一些人声称他们发现的rp值与从介子氢原子实验中得到的相同,而另一些人则再次确认rp值更大。最新的论文(包括评论)得出的结论是,这个难题尚未解决。在本文中,我们提请研究界注意,处理质子半径难题,贡献因素从未在任何以前的计算中考虑。这个因素与第二种口味的氢原子有关,它的存在在四种不同类型的原子实验中得到了证实。我们提出了一个相对简单的模型来说明这个因素的作用。我们证明,即使忽略少量的第二味介子氢原子对实验气体的影响,也会产生质子电荷半径比实际值小4%的错误结果,因此两个有争议的质子电荷半径值中较大的值实际上可能是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Quasilinearization Method for Caputo Fractional Differential Equations with Initial Conditions with Applications Effects of Colored Noise in the Dynamic Motions and Conformational Exploration of Enzymes On the Algebraic Geometry of Multiview Characterization of the Solution Properties of Sodium Dodecylsulphate Containing Alkaline–Surfactant–Polymer Flooding Media Classifying Sets of Type (4,n) in PG(3,q)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1