{"title":"Visual Analysis of Multivariate Intensive Care Surveillance Data","authors":"N. Brich, C. Schulz, Jörg Peter, Wilfried Klingert, M. Schenk, D. Weiskopf, M. Krone","doi":"10.2312/vcbm.20201174","DOIUrl":null,"url":null,"abstract":"We present an approach for visual analysis of high-dimensional measurement data with varying sampling rates in the context of an experimental post-surgery study performed on a porcine surrogate model. The study aimed at identifying parameters suitable for diagnosing and prognosticating the volume state—a crucial and difficult task in intensive care medicine. In intensive care, most assessments not only depend on a single measurement but a plethora of mixed measurements over time. Even for trained experts, efficient and accurate analysis of such multivariate time-dependent data remains a challenging task. We present a linked-view post hoc visual analysis application that reduces data complexity by combining projection-based time curves for overview with small multiples for details on demand. Our approach supports not only the analysis of individual patients but also the analysis of ensembles by adapting existing techniques using non-parametric statistics. We evaluated the effectiveness and acceptance of our application through expert feedback with domain scientists from the surgical department using real-world data: the results show that our approach allows for detailed analysis of changes in patient state while also summarizing the temporal development of the overall condition. Furthermore, the medical experts believe that our method can be transferred from medical research to the clinical context, for example, to identify the early onset of a sepsis. CCS Concepts • Applied computing → Health care information systems; • Mathematics of computing → Time series analysis; Dimensionality reduction; • Human-centered computing → Information visualization; © 2020 The Author(s) Eurographics Proceedings © 2020 The Eurographics Association. DOI: 10.2312/vcbm.20201174 https://diglib.eg.org https://www.eg.org N. Brich et al. / Visual Analysis of Multivariate Intensive Care Surveillance Data","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"35 1","pages":"71-83"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20201174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
多变量重症监护监测数据的可视化分析
我们提出了一种在猪代孕模型上进行的实验性术后研究背景下,以不同采样率对高维测量数据进行视觉分析的方法。该研究旨在确定适合诊断和预测体积状态的参数,这是重症监护医学中至关重要和困难的任务。在重症监护中,大多数评估不仅依赖于单一的测量,而且随着时间的推移,还依赖于过多的混合测量。即使对于训练有素的专家来说,有效和准确地分析这种多变量时间相关数据仍然是一项具有挑战性的任务。我们提出了一个链接视图的事后可视化分析应用程序,通过将基于投影的时间曲线与小倍数的需求细节相结合,降低了数据的复杂性。我们的方法不仅支持个体患者的分析,而且通过使用非参数统计调整现有技术来支持整体分析。我们通过与外科领域科学家使用真实数据的专家反馈来评估我们的应用程序的有效性和接受度:结果表明,我们的方法允许详细分析患者状态的变化,同时也总结了整体状况的时间发展。此外,医学专家认为,我们的方法可以从医学研究转移到临床环境中,例如,识别败血症的早期发作。•应用计算→医疗保健信息系统;•计算数学→时间序列分析;降维;•以人为本→信息可视化;©2020 The Author(s) Eurographics Proceedings©2020 The Eurographics Association。DOI: 10.2312 / vcbm。20201174 https://diglib.eg.org https://www.eg.org N. Brich et al. /重症监护监测数据的可视化分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。