Dedacus N. Ohaegbuchi, Mebrim Charles Chukwuemeka, Gabriel Awara
{"title":"Solution of Combined Heat and Power Economic Dispatch Problem Using Genetic Algorithm","authors":"Dedacus N. Ohaegbuchi, Mebrim Charles Chukwuemeka, Gabriel Awara","doi":"10.4236/epe.2022.149023","DOIUrl":null,"url":null,"abstract":"This research proposes a synergistic meta-heuristic algorithm for solving the extreme operational complications of combined heat and power economic dispatch problem towards the advantageous economic outcomes on the cost of generation. The combined heat and power (CHP) is a system that provides electricity and thermal energy concurrently. For its extraordinary efficiency and significant emission reduction, it is considered a promising energy pros-pect. The broad application of combined heat and power units requires the joint dispatch of power and heating systems, in which the modelling of combined heat and power units plays a vital role. The present research employs the genetic optimization algorithm to evaluate the cost function, heat and power dispatch values encountered in a system with simple cycle cogeneration unit and quadratic cost function. The system was first modeled to determine the various parameters of combined heat and power units towards solving its economic dispatch problem directly. In order for modelling to be done, a general structure of combined heat and power must be defined. The test system considered consists of four units: two conventional power units, one combined heat and power unit and one heat-only unit. The algorithm was applied to test system while taking into account the power and heat units, bounds of the units and feasible operation region of cogeneration unit. Output decision variables of 4-unit test systems plus cost function from Genetic Algorithm (GA), was determined using appropriate codes. The proposed algorithm obtained compared favourably with that obtained with the direct solution algorithm discussed in a previous paper. We conclude that the genetic algorithm is quite efficient in dealing with non-convex and constrained combined heat and power economic dispatch problem.","PeriodicalId":62938,"journal":{"name":"能源与动力工程(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源与动力工程(英文)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/epe.2022.149023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research proposes a synergistic meta-heuristic algorithm for solving the extreme operational complications of combined heat and power economic dispatch problem towards the advantageous economic outcomes on the cost of generation. The combined heat and power (CHP) is a system that provides electricity and thermal energy concurrently. For its extraordinary efficiency and significant emission reduction, it is considered a promising energy pros-pect. The broad application of combined heat and power units requires the joint dispatch of power and heating systems, in which the modelling of combined heat and power units plays a vital role. The present research employs the genetic optimization algorithm to evaluate the cost function, heat and power dispatch values encountered in a system with simple cycle cogeneration unit and quadratic cost function. The system was first modeled to determine the various parameters of combined heat and power units towards solving its economic dispatch problem directly. In order for modelling to be done, a general structure of combined heat and power must be defined. The test system considered consists of four units: two conventional power units, one combined heat and power unit and one heat-only unit. The algorithm was applied to test system while taking into account the power and heat units, bounds of the units and feasible operation region of cogeneration unit. Output decision variables of 4-unit test systems plus cost function from Genetic Algorithm (GA), was determined using appropriate codes. The proposed algorithm obtained compared favourably with that obtained with the direct solution algorithm discussed in a previous paper. We conclude that the genetic algorithm is quite efficient in dealing with non-convex and constrained combined heat and power economic dispatch problem.