Heterostructure Carbon-Packed Mosse Nanospheres for Flexible Reram and Synapse Devices

Adila Rani, Atul C Khot, Il Gyu Jang, Tae Geun Kim
{"title":"Heterostructure Carbon-Packed Mosse Nanospheres for Flexible Reram and Synapse Devices","authors":"Adila Rani, Atul C Khot, Il Gyu Jang, Tae Geun Kim","doi":"10.2139/ssrn.3935581","DOIUrl":null,"url":null,"abstract":"This paper reports on the synthesis of vacancy-assisted carbon-packed MoSSe (C@MoSSe) nanospheres and their use in memristor and neuromorphic devices. The heterostructure C@MoSSe nanospheres were fabricated using simple hydrothermal and sonication methods to synthesize large-scale, uniform C@MoSSe films on flexible substrates. The carbon skeleton, tightly adhered to the heterostructure MoSSe nanospheres, helped assign low sp 2 characteristics to the vacancies on the defective surface of the MoSSe nanospheres, thereby facilitating the realization of highly stable memristor and neuromorphic performance. In addition, the defects in the crystal lattice of the pure phase of MoSSe increased the band gap (~4.39 eV) to be larger than the bulk and Janus structure of MoSSe (1.2 and 1.9 eV, respectively), resulting in carrier transport owing to trap filling. The C@MoSSe-based memristor successfully mimicked the basic and complex properties of synaptic plasticity, with a critical time window of ~460 μs, lower than that for the human brain. The bipolar memory performance, such as high on/off current ratio, reasonably low operating voltage, and stability, depended on the thickness of the C@MoSSe layers. The findings demonstrate the application potential of C@MoSSe-based memristors and can promote the realization of large-scale neuromorphic circuits.","PeriodicalId":18341,"journal":{"name":"Materials Science eJournal","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3935581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper reports on the synthesis of vacancy-assisted carbon-packed MoSSe (C@MoSSe) nanospheres and their use in memristor and neuromorphic devices. The heterostructure C@MoSSe nanospheres were fabricated using simple hydrothermal and sonication methods to synthesize large-scale, uniform C@MoSSe films on flexible substrates. The carbon skeleton, tightly adhered to the heterostructure MoSSe nanospheres, helped assign low sp 2 characteristics to the vacancies on the defective surface of the MoSSe nanospheres, thereby facilitating the realization of highly stable memristor and neuromorphic performance. In addition, the defects in the crystal lattice of the pure phase of MoSSe increased the band gap (~4.39 eV) to be larger than the bulk and Janus structure of MoSSe (1.2 and 1.9 eV, respectively), resulting in carrier transport owing to trap filling. The C@MoSSe-based memristor successfully mimicked the basic and complex properties of synaptic plasticity, with a critical time window of ~460 μs, lower than that for the human brain. The bipolar memory performance, such as high on/off current ratio, reasonably low operating voltage, and stability, depended on the thickness of the C@MoSSe layers. The findings demonstrate the application potential of C@MoSSe-based memristors and can promote the realization of large-scale neuromorphic circuits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于柔性神经元和突触器件的异质结构碳包覆Mosse纳米球
本文报道了空位辅助碳填充MoSSe (C@MoSSe)纳米球的合成及其在忆阻器和神经形态器件中的应用。采用简单的水热和超声方法制备了异质结构C@MoSSe纳米球,在柔性衬底上合成了大规模、均匀的C@MoSSe薄膜。碳骨架与异质结构MoSSe纳米球紧密结合,有助于将低sp - 2特性赋予MoSSe纳米球缺陷表面的空缺,从而有助于实现高度稳定的记忆电阻和神经形态性能。此外,MoSSe纯相晶格中的缺陷使带隙增大(~4.39 eV),大于MoSSe本体结构和Janus结构的带隙(分别为1.2 eV和1.9 eV),导致陷阱填充导致载流子输运。C@MoSSe-based忆阻器成功地模拟了突触可塑性的基本和复杂特性,临界时间窗为~460 μs,低于人脑的临界时间窗。双极存储器的性能,如高开/关电流比、合理的低工作电压和稳定性,取决于C@MoSSe层的厚度。研究结果显示了C@MoSSe-based记忆电阻器的应用潜力,可以促进大规模神经形态电路的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Racemic Dimers as Models of Chiral Macrocycles Self-Assembled on Pyrolytic Graphite Effect of Resveratrol on Sn-Fe Alloy Electrodeposition Anisotropic Grain Boundary Area and Energy Distributions in Tungsten A Novel Method for Densification of Titanium Using Hydrogenation-Induced Expansion Under Constrained Conditions Determination of the Paratellurite Stiffness Constants Temperature Coefficients by the Acousto-Optic Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1