Ronny Gueguen, Guillaume Sahuquet, S. Mer, A. Toutant, Françoise Bataille, G. Flamant
{"title":"Experimental Study of an upflow Fluidized Bed: Identification of Fluidization Regimes","authors":"Ronny Gueguen, Guillaume Sahuquet, S. Mer, A. Toutant, Françoise Bataille, G. Flamant","doi":"10.1051/matecconf/202337907005","DOIUrl":null,"url":null,"abstract":"The concept of solar receiver using fluidized particles as heat transfer fluid is attractive from the point of view of its performance but also of the material used. In this concept, the receiver is composed of tubes subjected to concentrated solar radiation in which the fluidized particles circulate vertically. Circulation in the tubes, immersed in a “nurse” fluidized bed, is ensured thanks to a controlled pressure difference imposed on the latter and secondary aeration. This ventilation located at the bottom of the absorber tubes makes it possible to control the fluidization regimes. The latter strongly influence the parietal heat transfers and therefore the performance of the receiver. In order to better understand the conditions of appearance of these regimes and to better identify them, a study at room temperature was carried out with a tube 45 mm in internal diameter and 3.63 m in height. The tube is instrumented with several pressure sensors distributed over its height. More than 170 experiments have been performed exploring wide ranges of particle and aeration flow rates, with and without particle circulation. Signal processing methods, classically used in the scientific literature of fluidized beds, are applied. Combined together, these methods have enabled the identification of bubbling, pistoning (of the wall and axisymmetric), turbulent fluidization and rapid fluidization regimes. The pooling of all this information allows the establishment of a diagram of the fluidization regimes and their transition, showing that the local slip velocity is the key parameter governing the structure of the flow.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337907005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The concept of solar receiver using fluidized particles as heat transfer fluid is attractive from the point of view of its performance but also of the material used. In this concept, the receiver is composed of tubes subjected to concentrated solar radiation in which the fluidized particles circulate vertically. Circulation in the tubes, immersed in a “nurse” fluidized bed, is ensured thanks to a controlled pressure difference imposed on the latter and secondary aeration. This ventilation located at the bottom of the absorber tubes makes it possible to control the fluidization regimes. The latter strongly influence the parietal heat transfers and therefore the performance of the receiver. In order to better understand the conditions of appearance of these regimes and to better identify them, a study at room temperature was carried out with a tube 45 mm in internal diameter and 3.63 m in height. The tube is instrumented with several pressure sensors distributed over its height. More than 170 experiments have been performed exploring wide ranges of particle and aeration flow rates, with and without particle circulation. Signal processing methods, classically used in the scientific literature of fluidized beds, are applied. Combined together, these methods have enabled the identification of bubbling, pistoning (of the wall and axisymmetric), turbulent fluidization and rapid fluidization regimes. The pooling of all this information allows the establishment of a diagram of the fluidization regimes and their transition, showing that the local slip velocity is the key parameter governing the structure of the flow.
期刊介绍:
MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.