CGoDial: A Large-Scale Benchmark for Chinese Goal-oriented Dialog Evaluation

Yinpei Dai, Wanwei He, Bowen Li, Yuchuan Wu, Zhen Cao, Zhongqi An, Jian Sun, Yongbin Li
{"title":"CGoDial: A Large-Scale Benchmark for Chinese Goal-oriented Dialog Evaluation","authors":"Yinpei Dai, Wanwei He, Bowen Li, Yuchuan Wu, Zhen Cao, Zhongqi An, Jian Sun, Yongbin Li","doi":"10.48550/arXiv.2211.11617","DOIUrl":null,"url":null,"abstract":"Practical dialog systems need to deal with various knowledge sources, noisy user expressions, and the shortage of annotated data. To better solve the above problems, we propose CGoDial, a new challenging and comprehensive Chinese benchmark for multi-domain Goal-oriented Dialog evaluation. It contains 96,763 dialog sessions, and 574,949 dialog turns totally, covering three datasets with different knowledge sources: 1) a slot-based dialog (SBD) dataset with table-formed knowledge, 2) a flow-based dialog (FBD) dataset with tree-formed knowledge, and a retrieval-based dialog (RBD) dataset with candidate-formed knowledge. To bridge the gap between academic benchmarks and spoken dialog scenarios, we either collect data from real conversations or add spoken features to existing datasets via crowd-sourcing. The proposed experimental settings include the combinations of training with either the entire training set or a few-shot training set, and testing with either the standard test set or a hard test subset, which can assess model capabilities in terms of general prediction, fast adaptability and reliable robustness.","PeriodicalId":74540,"journal":{"name":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","volume":"182 1","pages":"4097-4111"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.11617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Practical dialog systems need to deal with various knowledge sources, noisy user expressions, and the shortage of annotated data. To better solve the above problems, we propose CGoDial, a new challenging and comprehensive Chinese benchmark for multi-domain Goal-oriented Dialog evaluation. It contains 96,763 dialog sessions, and 574,949 dialog turns totally, covering three datasets with different knowledge sources: 1) a slot-based dialog (SBD) dataset with table-formed knowledge, 2) a flow-based dialog (FBD) dataset with tree-formed knowledge, and a retrieval-based dialog (RBD) dataset with candidate-formed knowledge. To bridge the gap between academic benchmarks and spoken dialog scenarios, we either collect data from real conversations or add spoken features to existing datasets via crowd-sourcing. The proposed experimental settings include the combinations of training with either the entire training set or a few-shot training set, and testing with either the standard test set or a hard test subset, which can assess model capabilities in terms of general prediction, fast adaptability and reliable robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CGoDial:中文目标导向对话评估的大规模基准
实用的对话系统需要处理各种各样的知识来源、嘈杂的用户表达和缺乏注释的数据。为了更好地解决上述问题,我们提出了一种新的具有挑战性和综合性的中文多领域目标导向对话评估基准CGoDial。它包含96,763个对话会话,574,949个对话回合,涵盖了三个不同知识来源的数据集:1)具有表形式知识的基于槽的对话(SBD)数据集,2)具有树形式知识的基于流的对话(FBD)数据集,以及具有候选形式知识的基于检索的对话(RBD)数据集。为了弥合学术基准和口语对话场景之间的差距,我们要么从真实对话中收集数据,要么通过众包向现有数据集中添加口语特征。本文提出的实验设置包括使用整个训练集或少量训练集进行训练的组合,以及使用标准测试集或硬测试子集进行测试,可以从一般预测、快速自适应和可靠鲁棒性方面评估模型的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records. Two Directions for Clinical Data Generation with Large Language Models: Data-to-Label and Label-to-Data. Hierarchical Pretraining on Multimodal Electronic Health Records. An Integrative Survey on Mental Health Conversational Agents to Bridge Computer Science and Medical Perspectives. A Comprehensive Evaluation of Biomedical Entity Linking Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1