{"title":"Active Optics—Progress in Modeling of Tulip-like Variable Curvature Mirrors","authors":"G. Lemaitre, P. Vola, P. Lanzoni","doi":"10.3390/opt4010004","DOIUrl":null,"url":null,"abstract":"We present new results obtained from the modeling of a tulip-like variable curvature mirror (VCM) in the case of a central force that reacts to its contour. From Nastran finite element analysis, we shows that 3-D optimizations, using non-linear static flexural option, with an appropriate solution sequence, provide an accurate tulip-like VCM thickness distribution. This allows us to take into account boundary conditions, including the thin outer collarette and its link to a rigid ring. Modeling with a quenched stainless steel chromium substrate provides diffraction-limited optical surfaces. Rayleigh’s quarter-wave criterion is performed over a zoom range from flat up to f/3.5 convexity over a 13 mm clear aperture and 10 daN central force. The optical testing results of a prototype tulip-like VCM elaborated from the previous analytic theory, show quasi-diffraction-limited figures for a zoom range up to f/5. The present modeling results should significantly help in the future construction of such VCMs with a zoom range extended up to f/3.5.","PeriodicalId":54548,"journal":{"name":"Progress in Optics","volume":"449 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/opt4010004","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
We present new results obtained from the modeling of a tulip-like variable curvature mirror (VCM) in the case of a central force that reacts to its contour. From Nastran finite element analysis, we shows that 3-D optimizations, using non-linear static flexural option, with an appropriate solution sequence, provide an accurate tulip-like VCM thickness distribution. This allows us to take into account boundary conditions, including the thin outer collarette and its link to a rigid ring. Modeling with a quenched stainless steel chromium substrate provides diffraction-limited optical surfaces. Rayleigh’s quarter-wave criterion is performed over a zoom range from flat up to f/3.5 convexity over a 13 mm clear aperture and 10 daN central force. The optical testing results of a prototype tulip-like VCM elaborated from the previous analytic theory, show quasi-diffraction-limited figures for a zoom range up to f/5. The present modeling results should significantly help in the future construction of such VCMs with a zoom range extended up to f/3.5.