Analyzing the Heat Transfer Property of Heat Pipe Influenced by Integrated Cooling Apparatus

Q4 Engineering 工程设计学报 Pub Date : 2014-03-11 DOI:10.1155/2014/409074
Chen-ching Ting, Chien-Chih Chen
{"title":"Analyzing the Heat Transfer Property of Heat Pipe Influenced by Integrated Cooling Apparatus","authors":"Chen-ching Ting, Chien-Chih Chen","doi":"10.1155/2014/409074","DOIUrl":null,"url":null,"abstract":"Heat pipe with discrete heat transfer property is often called thermal superconductor because it has extremely large thermal conductivity. This special heat transfer property is destroyed by integrating cooling apparatus and further reducing the cooling power of a heat pipe cooler. This paper experimentally studied the heat transfer property of heat pipe influenced by integrated cooling apparatus. To simplify the investigating process, a home-made square heat pipe with the dimensions of  mm3 was built with two pieces of copper plates and two pieces of glass plates face to face, respectively. The two pieces of copper plates were constructed with inside walls of capillary structure and the two pieces of glasses were with antifog inside walls for observing the inner phenomenon. Moreover, isothermal circulating cooling water was applied outside the heat pipe instead of cooling fin. The results show that heat vapor in the heat pipe is condensed earlier and cannot reach the remote section of condenser. In other words, the heat transfer property of heat pipe is destroyed by integrating cooling water. This phenomenon causes the unfavorable cooling power of the heat pipe cooler.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2014/409074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

Heat pipe with discrete heat transfer property is often called thermal superconductor because it has extremely large thermal conductivity. This special heat transfer property is destroyed by integrating cooling apparatus and further reducing the cooling power of a heat pipe cooler. This paper experimentally studied the heat transfer property of heat pipe influenced by integrated cooling apparatus. To simplify the investigating process, a home-made square heat pipe with the dimensions of  mm3 was built with two pieces of copper plates and two pieces of glass plates face to face, respectively. The two pieces of copper plates were constructed with inside walls of capillary structure and the two pieces of glasses were with antifog inside walls for observing the inner phenomenon. Moreover, isothermal circulating cooling water was applied outside the heat pipe instead of cooling fin. The results show that heat vapor in the heat pipe is condensed earlier and cannot reach the remote section of condenser. In other words, the heat transfer property of heat pipe is destroyed by integrating cooling water. This phenomenon causes the unfavorable cooling power of the heat pipe cooler.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合冷却装置对热管传热特性的影响分析
具有离散传热特性的热管由于具有极大的导热系数,通常被称为热超导体。这种特殊的传热特性通过集成冷却装置和进一步降低热管冷却器的冷却功率而被破坏。实验研究了集成冷却装置对热管传热性能的影响。为了简化调查过程,我们自制了一根尺寸为mm3的方形热管,分别用两块铜板和两块玻璃板面对面搭建。两块铜板的内壁为毛细管结构,两块玻璃的内壁为防雾玻璃,用于观察内部现象。采用等温循环冷却水代替散热片在热管外进行冷却。结果表明,热管内的热蒸汽凝结时间较早,不能到达冷凝器的远段。换句话说,通过整合冷却水破坏了热管的传热性能。这种现象造成热管冷却器冷却功率不利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
工程设计学报
工程设计学报 Engineering-Engineering (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
2447
审稿时长
14 weeks
期刊介绍: Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.
期刊最新文献
Innovative design of box elevator epidemic prevention function integrating AD and TRIZ Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer Application progress of artificial intelligence in military confrontation Cloud storage data integrity audit based on an index–stub table Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1