Fabrication and microstructural analysis of 3A21/7075 aluminum alloy cladding material based on impact jet solid–liquid compound casting

Hu Ming, Ren Xiaoxue, Sun Jian-bo, Z. Yunlong, Teng Chunfeng, Qiao Guang
{"title":"Fabrication and microstructural analysis of 3A21/7075 aluminum alloy cladding material based on impact jet solid–liquid compound casting","authors":"Hu Ming, Ren Xiaoxue, Sun Jian-bo, Z. Yunlong, Teng Chunfeng, Qiao Guang","doi":"10.1177/2633366X20934485","DOIUrl":null,"url":null,"abstract":"To solve thickness problem for high-strength aluminum alloy used as plastic mold materials and eliminate oxide film on the surface of aluminum alloy, a new compound casting, namely impact jet solid–liquid compound casting, was developed to fabricate 3A21/7075 aluminum alloy cladding material. Then, optical microscope (OM), electron-backscattered diffraction (EBSD) technique, and transmission electron microscope (TEM) together with energy-dispersive spectrometer (EDS) were used to analyze microstructure of 3A21/7075 aluminum alloy cladding material. The OM and EBSD results showed that the 3A21/7075 aluminum alloy cladding material was composed of 3A21 cladding layer, fusion zone (FZ), heat-affected zone, and 7075 matrix. The grain morphology on both sides of FZ had great differences. Moreover, the TEM and EDS results showed that the 3A21 cladding layer showed a bulk phase and lots of fine and dispersed granular phases, while the 7075 matrix appeared undetermined strip phases and amounts of fine and dispersed rod-like phases. Moreover, FZ existed a great deal of fine and dispersed granular phases and rod-like phases. The 3A21/7075 aluminum alloy cladding material could effectively solve the problems mentioned above and the in-depth analysis of microstructures of 3A21/7075 aluminum alloy cladding material was of great importance in terms of engineering value and academic significance.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2633366X20934485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To solve thickness problem for high-strength aluminum alloy used as plastic mold materials and eliminate oxide film on the surface of aluminum alloy, a new compound casting, namely impact jet solid–liquid compound casting, was developed to fabricate 3A21/7075 aluminum alloy cladding material. Then, optical microscope (OM), electron-backscattered diffraction (EBSD) technique, and transmission electron microscope (TEM) together with energy-dispersive spectrometer (EDS) were used to analyze microstructure of 3A21/7075 aluminum alloy cladding material. The OM and EBSD results showed that the 3A21/7075 aluminum alloy cladding material was composed of 3A21 cladding layer, fusion zone (FZ), heat-affected zone, and 7075 matrix. The grain morphology on both sides of FZ had great differences. Moreover, the TEM and EDS results showed that the 3A21 cladding layer showed a bulk phase and lots of fine and dispersed granular phases, while the 7075 matrix appeared undetermined strip phases and amounts of fine and dispersed rod-like phases. Moreover, FZ existed a great deal of fine and dispersed granular phases and rod-like phases. The 3A21/7075 aluminum alloy cladding material could effectively solve the problems mentioned above and the in-depth analysis of microstructures of 3A21/7075 aluminum alloy cladding material was of great importance in terms of engineering value and academic significance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冲击喷射固液复合铸造3A21/7075铝合金包层材料制备及显微组织分析
为解决高强铝合金作为塑料模具材料的厚度问题,消除铝合金表面氧化膜,研制了一种新型复合铸造方法,即冲击射流固液复合铸造,制备3A21/7075铝合金包层材料。利用光学显微镜(OM)、电子背散射衍射(EBSD)技术、透射电镜(TEM)和能谱仪(EDS)对3A21/7075铝合金包层材料的微观结构进行了分析。OM和EBSD结果表明,3A21/7075铝合金熔覆材料由3A21熔覆层、熔合区(FZ)、热影响区和7075基体组成。FZ两侧的晶粒形态差异较大。TEM和EDS结果表明,3A21熔覆层呈现出块状相和大量细小分散的颗粒相,而7075熔覆层呈现出未确定的条状相和大量细小分散的棒状相。FZ中存在大量细小分散的颗粒相和棒状相。3A21/7075铝合金包层材料可以有效地解决上述问题,深入分析3A21/7075铝合金包层材料的显微组织具有重要的工程价值和学术意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance of blockboard using particle composite bagasse waste as core layer materials Vibration studies of an axially moving epoxy-carbon nanofiber composite beam in thermal environment—Effect of various nanofiber reinforcements Evaluation of fatigue life of fiberglass reinforced polyester composite materials using Weibull analysis methods Performance analysis of similar and dissimilar self-piercing riveted joints in aluminum alloys Characterization of animal shells-derived hydroxyapatite reinforced epoxy bio-composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1