A Divide-and-Conquer–based Early Classification Approach for Multivariate Time Series with Different Sampling Rate Components in IoT

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet of Things Pub Date : 2020-04-09 DOI:10.1145/3375877
Ashish Gupta, Hari Prabhat Gupta, Bhaskar Biswas, Tanima Dutta
{"title":"A Divide-and-Conquer–based Early Classification Approach for Multivariate Time Series with Different Sampling Rate Components in IoT","authors":"Ashish Gupta, Hari Prabhat Gupta, Bhaskar Biswas, Tanima Dutta","doi":"10.1145/3375877","DOIUrl":null,"url":null,"abstract":"In the era of the Internet of Things (IoT), the sensor-based devices produce the Multivariate Time Series (MTS). A classification approach helps to predict the class label of an incoming MTS. Due to the large dimension and different sampling rate of the sensors in a given MTS, a classifier takes time to predict the class label. Some IoT applications may require early prediction of the class label where the classifier starts the prediction once the minimum number of data points are collected. In this article, we address the problem of early prediction of the class label of an MTS in IoT. This work considers the sensors with different sampling rate to generate the MTS. Each sensor generates a time series (component) of the MTS. We propose a Divide-and-Conquer–based early classification approach for classifying such MTS. The approach constructs an ensemble classifier using a probabilistic classifier and hierarchical clustering. The ensemble classifier employs a Divide-and-Conquer method to handle the different sampling rate components during the prediction of class label. The experimental results show that our approach significantly outperforms the existing approaches on real-world datasets using various evaluation metrics.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 9

Abstract

In the era of the Internet of Things (IoT), the sensor-based devices produce the Multivariate Time Series (MTS). A classification approach helps to predict the class label of an incoming MTS. Due to the large dimension and different sampling rate of the sensors in a given MTS, a classifier takes time to predict the class label. Some IoT applications may require early prediction of the class label where the classifier starts the prediction once the minimum number of data points are collected. In this article, we address the problem of early prediction of the class label of an MTS in IoT. This work considers the sensors with different sampling rate to generate the MTS. Each sensor generates a time series (component) of the MTS. We propose a Divide-and-Conquer–based early classification approach for classifying such MTS. The approach constructs an ensemble classifier using a probabilistic classifier and hierarchical clustering. The ensemble classifier employs a Divide-and-Conquer method to handle the different sampling rate components during the prediction of class label. The experimental results show that our approach significantly outperforms the existing approaches on real-world datasets using various evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网中不同采样率分量多元时间序列的分治早期分类方法
在物联网(IoT)时代,基于传感器的设备产生多元时间序列(MTS)。分类方法有助于预测输入MTS的类别标签,由于给定MTS中的传感器尺寸大且采样率不同,分类器需要花费时间来预测类别标签。一些物联网应用可能需要对类别标签进行早期预测,一旦收集到最小数量的数据点,分类器就会开始预测。在本文中,我们解决了物联网中MTS类别标签的早期预测问题。本文考虑不同采样率的传感器来生成MTS,每个传感器生成MTS的一个时间序列(分量),提出了一种基于分而治的早期分类方法来对MTS进行分类,该方法使用概率分类器和层次聚类构造了一个集成分类器。集成分类器在类标号预测过程中采用分而治之的方法来处理不同的采样率分量。实验结果表明,我们的方法在使用各种评估指标的真实数据集上显著优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
期刊最新文献
FLAShadow: A Flash-based Shadow Stack for Low-end Embedded Systems CoSense: Deep Learning Augmented Sensing for Coexistence with Networking in Millimeter-Wave Picocells CASPER: Context-Aware IoT Anomaly Detection System for Industrial Robotic Arms Collaborative Video Caching in the Edge Network using Deep Reinforcement Learning ARIoTEDef: Adversarially Robust IoT Early Defense System Based on Self-Evolution against Multi-step Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1