{"title":"Imitative Non-Autoregressive Modeling for Trajectory Forecasting and Imputation","authors":"Mengshi Qi, Jie Qin, Yu Wu, Yi Yang","doi":"10.1109/CVPR42600.2020.01275","DOIUrl":null,"url":null,"abstract":"Trajectory forecasting and imputation are pivotal steps towards understanding the movement of human and objects, which are quite challenging since the future trajectories and missing values in a temporal sequence are full of uncertainties, and the spatial-temporally contextual correlation is hard to model. Yet, the relevance between sequence prediction and imputation is disregarded by existing approaches. To this end, we propose a novel imitative non-autoregressive modeling method to simultaneously handle the trajectory prediction task and the missing value imputation task. Specifically, our framework adopts an imitation learning paradigm, which contains a recurrent conditional variational autoencoder (RC-VAE) as a demonstrator, and a non-autoregressive transformation model (NART) as a learner. By jointly optimizing the two models, RC-VAE can predict the future trajectory and capture the temporal relationship in the sequence to supervise the NART learner. As a result, NART learns from the demonstrator and imputes the missing value in a non autoregressive strategy. We conduct extensive experiments on three popular datasets, and the results show that our model achieves state-of-the-art performance across all the datasets.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"48 1","pages":"12733-12742"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR42600.2020.01275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Trajectory forecasting and imputation are pivotal steps towards understanding the movement of human and objects, which are quite challenging since the future trajectories and missing values in a temporal sequence are full of uncertainties, and the spatial-temporally contextual correlation is hard to model. Yet, the relevance between sequence prediction and imputation is disregarded by existing approaches. To this end, we propose a novel imitative non-autoregressive modeling method to simultaneously handle the trajectory prediction task and the missing value imputation task. Specifically, our framework adopts an imitation learning paradigm, which contains a recurrent conditional variational autoencoder (RC-VAE) as a demonstrator, and a non-autoregressive transformation model (NART) as a learner. By jointly optimizing the two models, RC-VAE can predict the future trajectory and capture the temporal relationship in the sequence to supervise the NART learner. As a result, NART learns from the demonstrator and imputes the missing value in a non autoregressive strategy. We conduct extensive experiments on three popular datasets, and the results show that our model achieves state-of-the-art performance across all the datasets.