Imitative Non-Autoregressive Modeling for Trajectory Forecasting and Imputation

Mengshi Qi, Jie Qin, Yu Wu, Yi Yang
{"title":"Imitative Non-Autoregressive Modeling for Trajectory Forecasting and Imputation","authors":"Mengshi Qi, Jie Qin, Yu Wu, Yi Yang","doi":"10.1109/CVPR42600.2020.01275","DOIUrl":null,"url":null,"abstract":"Trajectory forecasting and imputation are pivotal steps towards understanding the movement of human and objects, which are quite challenging since the future trajectories and missing values in a temporal sequence are full of uncertainties, and the spatial-temporally contextual correlation is hard to model. Yet, the relevance between sequence prediction and imputation is disregarded by existing approaches. To this end, we propose a novel imitative non-autoregressive modeling method to simultaneously handle the trajectory prediction task and the missing value imputation task. Specifically, our framework adopts an imitation learning paradigm, which contains a recurrent conditional variational autoencoder (RC-VAE) as a demonstrator, and a non-autoregressive transformation model (NART) as a learner. By jointly optimizing the two models, RC-VAE can predict the future trajectory and capture the temporal relationship in the sequence to supervise the NART learner. As a result, NART learns from the demonstrator and imputes the missing value in a non autoregressive strategy. We conduct extensive experiments on three popular datasets, and the results show that our model achieves state-of-the-art performance across all the datasets.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"48 1","pages":"12733-12742"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR42600.2020.01275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Trajectory forecasting and imputation are pivotal steps towards understanding the movement of human and objects, which are quite challenging since the future trajectories and missing values in a temporal sequence are full of uncertainties, and the spatial-temporally contextual correlation is hard to model. Yet, the relevance between sequence prediction and imputation is disregarded by existing approaches. To this end, we propose a novel imitative non-autoregressive modeling method to simultaneously handle the trajectory prediction task and the missing value imputation task. Specifically, our framework adopts an imitation learning paradigm, which contains a recurrent conditional variational autoencoder (RC-VAE) as a demonstrator, and a non-autoregressive transformation model (NART) as a learner. By jointly optimizing the two models, RC-VAE can predict the future trajectory and capture the temporal relationship in the sequence to supervise the NART learner. As a result, NART learns from the demonstrator and imputes the missing value in a non autoregressive strategy. We conduct extensive experiments on three popular datasets, and the results show that our model achieves state-of-the-art performance across all the datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于非自回归模型的轨迹预测与估算
轨迹预测和归因是理解人和物体运动的关键步骤,但由于未来轨迹和缺失值在时间序列中充满不确定性,且时空背景相关性难以建模,因此具有相当大的挑战性。然而,现有的方法忽略了序列预测与imputation之间的相关性。为此,我们提出了一种新的模拟非自回归建模方法来同时处理轨迹预测任务和缺失值输入任务。具体来说,我们的框架采用了一种模仿学习范式,其中包含一个循环条件变分自编码器(RC-VAE)作为演示器,一个非自回归转换模型(NART)作为学习者。通过联合优化两个模型,RC-VAE可以预测未来的轨迹并捕捉序列中的时间关系,从而监督NART学习者。因此,NART从演示器中学习,并以非自回归策略归因缺失值。我们在三个流行的数据集上进行了广泛的实验,结果表明我们的模型在所有数据集上都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geometric Structure Based and Regularized Depth Estimation From 360 Indoor Imagery 3D Part Guided Image Editing for Fine-Grained Object Understanding SDC-Depth: Semantic Divide-and-Conquer Network for Monocular Depth Estimation Approximating shapes in images with low-complexity polygons PFRL: Pose-Free Reinforcement Learning for 6D Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1