R. Kavikumar, B. Kaviarasan, Yonggwon Lee, O. Kwon, R. Sakthivel, Seong-Gon Choi
{"title":"Robust dynamic sliding mode control design for interval type-2 fuzzy systems","authors":"R. Kavikumar, B. Kaviarasan, Yonggwon Lee, O. Kwon, R. Sakthivel, Seong-Gon Choi","doi":"10.3934/dcdss.2022014","DOIUrl":null,"url":null,"abstract":"This paper discusses the problem of stabilization of interval type-2 fuzzy systems with uncertainties, time delay and external disturbance using a dynamic sliding mode controller. The sliding surface function, which is based on both the system's state and control input vectors, is used during the control design process. The sliding mode dynamics are presented by defining a new vector that augments the system state and control vectors. First, the reachability of the addressed sliding mode surface is demonstrated. Second, the required sufficient conditions for the system's stability and the proposed control design are derived by using extended dissipative theory and an asymmetric Lyapunov-Krasovskii functional approach. Unlike some existing sliding mode control designs, the one proposed in this paper does not require the control coefficient matrices of all linear subsystems to be the same, reducing the method's conservatism. Finally, numerical examples are provided to demonstrate the viability and superiority of the proposed design method.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2022014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper discusses the problem of stabilization of interval type-2 fuzzy systems with uncertainties, time delay and external disturbance using a dynamic sliding mode controller. The sliding surface function, which is based on both the system's state and control input vectors, is used during the control design process. The sliding mode dynamics are presented by defining a new vector that augments the system state and control vectors. First, the reachability of the addressed sliding mode surface is demonstrated. Second, the required sufficient conditions for the system's stability and the proposed control design are derived by using extended dissipative theory and an asymmetric Lyapunov-Krasovskii functional approach. Unlike some existing sliding mode control designs, the one proposed in this paper does not require the control coefficient matrices of all linear subsystems to be the same, reducing the method's conservatism. Finally, numerical examples are provided to demonstrate the viability and superiority of the proposed design method.