Green synthesis of CuO nanoparticles using Peganum harmala extract for photocatalytic and sonocatalytic degradation of reactive dye and organic compounds
Reza Fekri, S. Mirbagheri, E. Fataei, G. Ebrahimzadeh-Rajaei, L. Taghavi
{"title":"Green synthesis of CuO nanoparticles using Peganum harmala extract for photocatalytic and sonocatalytic degradation of reactive dye and organic compounds","authors":"Reza Fekri, S. Mirbagheri, E. Fataei, G. Ebrahimzadeh-Rajaei, L. Taghavi","doi":"10.3233/mgc-220045","DOIUrl":null,"url":null,"abstract":" The present study was performed to evaluate the effectiveness of photocatalytic and sonocatalytic processes for the removal of reactive blue 5 dye and organic compounds of textile effluent in the presence of copper oxide nanoparticles (CuO NPs). CuO NPs were synthesized using Peganum harmala seed extract. The structure of NPs was confirmed using SEM, TEM, XRD, EDX, and FTIR techniques. The tests were carried out in a batch system to assess factors affecting the dye removal efficiency, including contact time, pH, NPs dosage, and initial dye concentration. The experimental results showed that the photocatalytic process (98.42%) produced a higher degradation percentage than the sonocatalytic process (76.16%). While, the dye removal efficiency was not significant in the dark conditions (without UV or US waves). The maximum removal of reactive blue 5 dye under photocatalytic and sonocatalytic conditions occurred at the presence of 0.15 g of CuO NPs and dye concentration of 40 and 60 mg/L, respectively. The kinetic data followed a pseudo-second-order model in both photocatalytic and sonocatalytic processes with a correlation coefficient higher than 0.99. Isotherm studies showed that the Langmuir model was the best isothermal model to describe the adsorptive behavior of CuO NPs in a dark condition. The results obtained from GC-MS showed that the photocatalytic process had a degradation efficiency of over 87% in the removal of organic compounds.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-220045","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study was performed to evaluate the effectiveness of photocatalytic and sonocatalytic processes for the removal of reactive blue 5 dye and organic compounds of textile effluent in the presence of copper oxide nanoparticles (CuO NPs). CuO NPs were synthesized using Peganum harmala seed extract. The structure of NPs was confirmed using SEM, TEM, XRD, EDX, and FTIR techniques. The tests were carried out in a batch system to assess factors affecting the dye removal efficiency, including contact time, pH, NPs dosage, and initial dye concentration. The experimental results showed that the photocatalytic process (98.42%) produced a higher degradation percentage than the sonocatalytic process (76.16%). While, the dye removal efficiency was not significant in the dark conditions (without UV or US waves). The maximum removal of reactive blue 5 dye under photocatalytic and sonocatalytic conditions occurred at the presence of 0.15 g of CuO NPs and dye concentration of 40 and 60 mg/L, respectively. The kinetic data followed a pseudo-second-order model in both photocatalytic and sonocatalytic processes with a correlation coefficient higher than 0.99. Isotherm studies showed that the Langmuir model was the best isothermal model to describe the adsorptive behavior of CuO NPs in a dark condition. The results obtained from GC-MS showed that the photocatalytic process had a degradation efficiency of over 87% in the removal of organic compounds.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.