Poster: privacy-preserving profile similarity computation in online social networks

Arjan Jeckmans, Qiang Tang, P. Hartel
{"title":"Poster: privacy-preserving profile similarity computation in online social networks","authors":"Arjan Jeckmans, Qiang Tang, P. Hartel","doi":"10.1145/2046707.2093495","DOIUrl":null,"url":null,"abstract":"Currently, none of the existing online social networks (OSNs) enables its users to make new friends without revealing their private information. This leaves the users in a vulnerable position when searching for new friends. We propose a solution which enables a user to compute her profile similarity with another user in a privacy-preserving way. Our solution is designed for a realistic OSN environment, where a pair of users is unlikely to be online at the same time.","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"1 1","pages":"793-796"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2093495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Currently, none of the existing online social networks (OSNs) enables its users to make new friends without revealing their private information. This leaves the users in a vulnerable position when searching for new friends. We propose a solution which enables a user to compute her profile similarity with another user in a privacy-preserving way. Our solution is designed for a realistic OSN environment, where a pair of users is unlikely to be online at the same time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海报:在线社交网络中保护隐私的个人资料相似度计算
目前,没有一个现有的在线社交网络(OSNs)允许其用户在不泄露私人信息的情况下结交新朋友。这让用户在寻找新朋友时处于弱势地位。我们提出了一种解决方案,使用户能够以保护隐私的方式计算她与另一个用户的个人资料相似度。我们的解决方案是针对实际的OSN环境设计的,不太可能出现一对用户同时在线的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
期刊最新文献
The Danger of Minimum Exposures: Understanding Cross-App Information Leaks on iOS through Multi-Side-Channel Learning. WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data. CCS '21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021 WAHC '21: Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Virtual Event, Korea, 15 November 2021 Incremental Learning Algorithm of Data Complexity Based on KNN Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1