MicroRNA-149 is epigenetically silenced tumor-suppressive microRNA, involved in cell proliferation and downregulation of AKT1 and cyclin D1 in human glioblastoma multiforme.

A. Ghasemi, S. Fallah, M. Ansari
{"title":"MicroRNA-149 is epigenetically silenced tumor-suppressive microRNA, involved in cell proliferation and downregulation of AKT1 and cyclin D1 in human glioblastoma multiforme.","authors":"A. Ghasemi, S. Fallah, M. Ansari","doi":"10.1139/BCB-2015-0064","DOIUrl":null,"url":null,"abstract":"Aberrant DNA methylation has been shown to inactivate tumor suppressor genes during carcinogenesis. MicroRNA-149 (miR-149) was recently demonstrated to function as a tumor suppressor gene in glioblastoma multiforme (GBM). However, the potential linkage of miR-149 levels and the underlying epigenetic regulatory mechanism in human GBM has not been studied. We used quantitative real-time polymerase chain reaction to investigate the levels of miR-149 in GBM tissues, their matched adjacent normal tissues, and glioblastoma U87MG cell line. Using bisulfite genomic sequencing technology, DNA methylation status of upstream region of miR-149 was evaluated in study population groups and the U87MG cell line. After treatment of cells with 5-aza-2'-deoxycitidine (5-aza-dC), the DNA methylation status, gene expression, and target protein levels of miR-149 were investigated. Our studies revealed that methylation and expression levels of miR-149 were significantly increased and decreased, respectively in GBM patients relative to the adjacent normal tissues (P < 0.01). MiR-149 suppressed the expression of AKT1 and cyclin D1 and reduced the proliferative activities of the U87MG cell line. Treatment of U87MG cells with 5-aza-dC reversed the hypermethylation status of miR-149, enhanced the expression of its gene, and decreased target mRNA and proteins levels (P < 0.01). These findings suggest that the methylation mechanism is associated with decreased expression levels of miR-149, which may in turn lead to the increased levels of its oncogenic target proteins.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"8 1","pages":"569-576"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/BCB-2015-0064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Aberrant DNA methylation has been shown to inactivate tumor suppressor genes during carcinogenesis. MicroRNA-149 (miR-149) was recently demonstrated to function as a tumor suppressor gene in glioblastoma multiforme (GBM). However, the potential linkage of miR-149 levels and the underlying epigenetic regulatory mechanism in human GBM has not been studied. We used quantitative real-time polymerase chain reaction to investigate the levels of miR-149 in GBM tissues, their matched adjacent normal tissues, and glioblastoma U87MG cell line. Using bisulfite genomic sequencing technology, DNA methylation status of upstream region of miR-149 was evaluated in study population groups and the U87MG cell line. After treatment of cells with 5-aza-2'-deoxycitidine (5-aza-dC), the DNA methylation status, gene expression, and target protein levels of miR-149 were investigated. Our studies revealed that methylation and expression levels of miR-149 were significantly increased and decreased, respectively in GBM patients relative to the adjacent normal tissues (P < 0.01). MiR-149 suppressed the expression of AKT1 and cyclin D1 and reduced the proliferative activities of the U87MG cell line. Treatment of U87MG cells with 5-aza-dC reversed the hypermethylation status of miR-149, enhanced the expression of its gene, and decreased target mRNA and proteins levels (P < 0.01). These findings suggest that the methylation mechanism is associated with decreased expression levels of miR-149, which may in turn lead to the increased levels of its oncogenic target proteins.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
microRNA -149是一种表观遗传沉默的肿瘤抑制microRNA,参与人多形性胶质母细胞瘤细胞增殖和AKT1和cyclin D1的下调。
异常DNA甲基化已被证明在癌变过程中使肿瘤抑制基因失活。MicroRNA-149 (miR-149)最近被证明在多形性胶质母细胞瘤(GBM)中起肿瘤抑制基因的作用。然而,miR-149水平与人类GBM中潜在的表观遗传调控机制的潜在联系尚未得到研究。我们使用实时定量聚合酶链反应研究了miR-149在GBM组织、其匹配的邻近正常组织和胶质母细胞瘤U87MG细胞系中的水平。利用亚硫酸氢盐基因组测序技术,在研究群体和U87MG细胞系中评估miR-149上游区域的DNA甲基化状态。用5-aza-2'-脱氧胞苷(5-aza-dC)处理细胞后,研究miR-149的DNA甲基化状态、基因表达和靶蛋白水平。我们的研究发现,相对于邻近的正常组织,GBM患者中miR-149的甲基化和表达水平分别显著升高和降低(P < 0.01)。MiR-149抑制AKT1和cyclin D1的表达,降低U87MG细胞系的增殖活性。5-aza-dC处理U87MG细胞可逆转miR-149的高甲基化状态,增强其基因表达,降低靶mRNA和蛋白水平(P < 0.01)。这些发现表明,甲基化机制与miR-149表达水平下降有关,这可能反过来导致其致癌靶蛋白水平升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The search for genetic dark matter and lessons learned from the journey. HOXA5 inhibits adipocytes proliferation through transcriptional regulation of Ccne1 and blocking JAK2/STAT3 signaling pathway in mice. Evaluation of HZX-960, a novel DCN1-UBC12 interaction inhibitor, as a potential antifibrotic compound for liver fibrosis. Curcumin attenuates intracerebral hemorrhage-induced neuronal apoptosis and neuroinflammation by suppressing the JAK1/STAT1 pathway. Establishing an incentive-based multi-stakeholder approach to Dual Use DNA screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1