Recognizing drosha processing sites by a two-step prediction model with structure and sequence information

Xingchi Hu, Yanhong Zhou, Chuang Ma
{"title":"Recognizing drosha processing sites by a two-step prediction model with structure and sequence information","authors":"Xingchi Hu, Yanhong Zhou, Chuang Ma","doi":"10.1109/BIBM.2012.6392714","DOIUrl":null,"url":null,"abstract":"Drosha is a class of RNase III enzyme plays important roles in the microRNA (miRNA) generation by cleaving primary miRNAs to release hairpin-shaped miRNA precursors. Accurately predicting the Drosha cleavage positions (i.e., processing sites) is helpful for the identification of miRNAs and the understanding of miRNA biogenesis mechanisms. In this study, we presented a Drosha processing site predictor, termed DroshaPSP, with a two-step prediction model by integrating structure and sequence features. Testing results on the Drosophila melanogaster miRNA data showed that DroshaPSP obtained a sensitivity of 0.859, a specificity of 0.999, and a Matthew's Correlation Coefficient of 0.864. We also found that the Shannon entropy is a powerful structure feature for DroshaPSP to distinguish true Drosha processing sites from the nearby pseudo processing sites effectively.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Drosha is a class of RNase III enzyme plays important roles in the microRNA (miRNA) generation by cleaving primary miRNAs to release hairpin-shaped miRNA precursors. Accurately predicting the Drosha cleavage positions (i.e., processing sites) is helpful for the identification of miRNAs and the understanding of miRNA biogenesis mechanisms. In this study, we presented a Drosha processing site predictor, termed DroshaPSP, with a two-step prediction model by integrating structure and sequence features. Testing results on the Drosophila melanogaster miRNA data showed that DroshaPSP obtained a sensitivity of 0.859, a specificity of 0.999, and a Matthew's Correlation Coefficient of 0.864. We also found that the Shannon entropy is a powerful structure feature for DroshaPSP to distinguish true Drosha processing sites from the nearby pseudo processing sites effectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于结构和序列信息的两步预测模型识别drosha加工位点
Drosha是一类RNase III酶,通过切割初级miRNA释放发夹状miRNA前体,在microRNA (miRNA)的生成中起重要作用。准确预测Drosha切割位置(即加工位点)有助于miRNA的鉴定和对miRNA生物发生机制的理解。在这项研究中,我们提出了一个Drosha加工位点预测器,称为DroshaPSP,具有两步预测模型,通过整合结构和序列特征。对黑腹果蝇miRNA数据的检测结果显示,DroshaPSP敏感性为0.859,特异性为0.999,马修相关系数为0.864。我们还发现Shannon熵是一个强大的结构特征,可以有效地区分真正的Drosha处理点和附近的伪处理点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards comprehensive longitudinal healthcare data capture On the repetitive collection indexing problem Sampling low-energy protein-protein configurations with basin hopping The effect of measurement approach and noise level on gene selection stability Clinical research progress of treatment over Tourette syndrome with acup-mox therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1