{"title":"Effect Analysis of Nursing Intervention on Lower Extremity Deep Venous Thrombosis in Patients","authors":"Xuanyue Zhang","doi":"10.4018/ijdwm.319948","DOIUrl":null,"url":null,"abstract":"In the modern era, nursing intervention is an increased commitment to patient quality and protection that allows nurses to make evidence-based healthcare decisions. The challenging characteristic of patients such as high deep venous thrombosis (DVT) and respiratory embolisms (RE) are significant health conditions that lead to post-operative severe injury and death. In this article, hybrid machine learning (HML) is used for senile patients with lower extremity fractures during the perioperative time and the clinical effectiveness of early stages nursing protocol for deep venous thrombosis of patients and nurses. A three-dimensional shape model of the user interface is shown the examined vessels, which have compression measurements mapped to the surface as colors and virtual image plane representation of DVT. The measures of comprehension have been validated using HML model segmentation experts and contrasted with paired f-tests to reduce the incidence of lower extremity deep venous thrombosis in patients and nurses.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.319948","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In the modern era, nursing intervention is an increased commitment to patient quality and protection that allows nurses to make evidence-based healthcare decisions. The challenging characteristic of patients such as high deep venous thrombosis (DVT) and respiratory embolisms (RE) are significant health conditions that lead to post-operative severe injury and death. In this article, hybrid machine learning (HML) is used for senile patients with lower extremity fractures during the perioperative time and the clinical effectiveness of early stages nursing protocol for deep venous thrombosis of patients and nurses. A three-dimensional shape model of the user interface is shown the examined vessels, which have compression measurements mapped to the surface as colors and virtual image plane representation of DVT. The measures of comprehension have been validated using HML model segmentation experts and contrasted with paired f-tests to reduce the incidence of lower extremity deep venous thrombosis in patients and nurses.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving