Comparative Evaluation of Anti-Corrosion Coatings for NdFeB-Type Magnets with Respect to Performance and Recyclability via Hydrogen-Assisted Recycling (HPMS)
C. Burkhardt, A. Lehmann, P. Fleissner, Laura Grau, Mirko Trautz, Maximilian Mungenast, B. Podmiljšak, S. Kobe
{"title":"Comparative Evaluation of Anti-Corrosion Coatings for NdFeB-Type Magnets with Respect to Performance and Recyclability via Hydrogen-Assisted Recycling (HPMS)","authors":"C. Burkhardt, A. Lehmann, P. Fleissner, Laura Grau, Mirko Trautz, Maximilian Mungenast, B. Podmiljšak, S. Kobe","doi":"10.3390/materproc2021005087","DOIUrl":null,"url":null,"abstract":"Various anti-corrosion coatings used on commercially available NdFeB-type magnets were comparatively examined for their durability and suitability for magnet reprocessing by hydrogen-assisted recycling (HPMS). Layer thickness and structure were determined by systematic microstructural analysis, and a standardized corrosion test was used to assess the durability of each layer. Chemical composition of the coatings was analyzed using SEM/EDS and ICP-OES. HPMS behavior was investigated using in situ video monitoring. The results of the presented investigations are an important contribution for the implementation of a sorting and labeling system to support and facilitate a commercially viable recycling of permanent magnets on an industrial scale.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"31 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/materproc2021005087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Various anti-corrosion coatings used on commercially available NdFeB-type magnets were comparatively examined for their durability and suitability for magnet reprocessing by hydrogen-assisted recycling (HPMS). Layer thickness and structure were determined by systematic microstructural analysis, and a standardized corrosion test was used to assess the durability of each layer. Chemical composition of the coatings was analyzed using SEM/EDS and ICP-OES. HPMS behavior was investigated using in situ video monitoring. The results of the presented investigations are an important contribution for the implementation of a sorting and labeling system to support and facilitate a commercially viable recycling of permanent magnets on an industrial scale.