Neurodynamic model for creative cognition of relational networks with even cyclic inhibition

V. Tsukerman
{"title":"Neurodynamic model for creative cognition of relational networks with even cyclic inhibition","authors":"V. Tsukerman","doi":"10.18500/0869-6632-2022-30-3-331-357","DOIUrl":null,"url":null,"abstract":"The purpose of this work is study of the neurodynamic foundations of the creative activity of the brain. Modern AI systems using deep neural network training require large amounts of input data, high computational costs and long training times. On the contrary, the brain can learn from small datasets in no time and, crucially, it is fundamentally creative. Methods. The study was carried out through computational experiments with neural networks containing 5 and 7 oscillatory layers (circuits) trained to represent abstract concepts of a certain class of animals. The scheme of neural networks with even cyclic inhibition (ECI networks) contains only bilateral inhibitory connections and consists of two subnets: a reference noncoding network, which is an analogue of the default brain mode neural network, and the main information network that receives time sequences of environmental signals and contextual inputs. After training, the reading of the population phase codes was performed with a simple linear decoder. Results. Conceptual learning of the network leads to the generation of a number of spatial abstract images that are distinguished by the most pronounced features of the relevant line of animals. In computational experiments, a wide set of isomorphic representations of concepts was obtained through: a) transformations of image spaces in a wide range of time scales of the training input signal flow, b) internal regulation of the time scales of mental representations of concepts, c) confirmation on the model of the dependence of psychological proximity of concepts on semantic distance; d) calling from memory (decoding) distributed groups of neurons of animal concepts, which the network has not been trained in. Conclusion. This paper shows for the first time how, using a small set of event input data (a sequence of 4 CCW and 2 CW signals) and very limited computational resources, ECI networks exhibit creative cognitions based on relational relationships, conceptual learning and generalization of knowledge.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-2022-30-3-331-357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this work is study of the neurodynamic foundations of the creative activity of the brain. Modern AI systems using deep neural network training require large amounts of input data, high computational costs and long training times. On the contrary, the brain can learn from small datasets in no time and, crucially, it is fundamentally creative. Methods. The study was carried out through computational experiments with neural networks containing 5 and 7 oscillatory layers (circuits) trained to represent abstract concepts of a certain class of animals. The scheme of neural networks with even cyclic inhibition (ECI networks) contains only bilateral inhibitory connections and consists of two subnets: a reference noncoding network, which is an analogue of the default brain mode neural network, and the main information network that receives time sequences of environmental signals and contextual inputs. After training, the reading of the population phase codes was performed with a simple linear decoder. Results. Conceptual learning of the network leads to the generation of a number of spatial abstract images that are distinguished by the most pronounced features of the relevant line of animals. In computational experiments, a wide set of isomorphic representations of concepts was obtained through: a) transformations of image spaces in a wide range of time scales of the training input signal flow, b) internal regulation of the time scales of mental representations of concepts, c) confirmation on the model of the dependence of psychological proximity of concepts on semantic distance; d) calling from memory (decoding) distributed groups of neurons of animal concepts, which the network has not been trained in. Conclusion. This paper shows for the first time how, using a small set of event input data (a sequence of 4 CCW and 2 CW signals) and very limited computational resources, ECI networks exhibit creative cognitions based on relational relationships, conceptual learning and generalization of knowledge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偶循环抑制下关系网络创造性认知的神经动力学模型
这项工作的目的是研究大脑创造性活动的神经动力学基础。使用深度神经网络训练的现代人工智能系统需要大量的输入数据、高计算成本和较长的训练时间。相反,大脑可以在短时间内从小数据集中学习,而且至关重要的是,它从根本上是具有创造性的。方法。这项研究是通过计算实验来进行的,神经网络包含5个和7个振荡层(电路),训练它们代表某一类动物的抽象概念。具有均匀循环抑制的神经网络方案(ECI网络)仅包含双边抑制连接,由两个子网组成:参考非编码网络,它是默认脑模式神经网络的模拟,以及接收环境信号和上下文输入的时间序列的主信息网络。训练后,用简单的线性解码器读取种群相位码。结果。网络的概念学习导致生成许多空间抽象图像,这些图像由相关动物的最显著特征区分。在计算实验中,通过a)训练输入信号流大范围时间尺度的图像空间变换,b)概念心理表征时间尺度的内部调节,c)概念心理接近度对语义距离依赖模型的确认,获得了一组广泛的概念同构表征;D)从记忆中调用(解码)分布的动物概念神经元群,网络还没有被训练过。结论。本文首次展示了如何使用一小部分事件输入数据(4个CCW和2个CW信号的序列)和非常有限的计算资源,ECI网络显示出基于关系关系、概念学习和知识泛化的创造性认知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
期刊最新文献
80 years of Vladislav A. Tsarev 70 years of Sergey V. Gonchenko 40 years of Ilya V. Sysoev To the 85th anniversary of Dmitry Ivanovich Trubetskov On the anniversary of Sergei A. Kashchenko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1