Use Cases and Methods of Virtual ADAS/ADS Calibration in Simulation

Moritz Markofsky, Max Schäfer, D. Schramm
{"title":"Use Cases and Methods of Virtual ADAS/ADS Calibration in Simulation","authors":"Moritz Markofsky, Max Schäfer, D. Schramm","doi":"10.3390/vehicles5030044","DOIUrl":null,"url":null,"abstract":"Integration, testing, and release of complex Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS) is one of the main challenges in the field of automated driving. In order for the systems to be accepted by customers and to compete in the market, they have to feature functional, comfortable, safe, efficient, and natural driving behavior. The calibration process acquires increasing importance in the achievement of this objective. Complex ADAS/ADS require the optimization of interacting calibration parameters in a large number of different scenarios—a task that can hardly be performed with feasible effort and cost using conventional calibration methods. Virtual calibration in simulation enables reproducible and automated testing of different data sets of calibration parameters in various scenarios. These capabilities facilitate different use cases to extend the conventional calibration process of ADAS/ADS through virtual testing. This paper discusses the different use cases of virtual calibration and methods to achieve the desired objectives. A special focus is on a multi-scenario-level method that can be used to iteratively calibrate ADAS/ADS for optimal behavior in a variety of scenarios, resulting in a more comfortable, safe, and natural behavior of the system and still a feasible number of test cases. The presented methods are implemented for the virtual calibration of an Adaptive Cruise Control model for evaluation.","PeriodicalId":73282,"journal":{"name":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","volume":"123 16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium. IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/vehicles5030044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integration, testing, and release of complex Advanced Driver Assistance Systems (ADAS) and Automated Driving Systems (ADS) is one of the main challenges in the field of automated driving. In order for the systems to be accepted by customers and to compete in the market, they have to feature functional, comfortable, safe, efficient, and natural driving behavior. The calibration process acquires increasing importance in the achievement of this objective. Complex ADAS/ADS require the optimization of interacting calibration parameters in a large number of different scenarios—a task that can hardly be performed with feasible effort and cost using conventional calibration methods. Virtual calibration in simulation enables reproducible and automated testing of different data sets of calibration parameters in various scenarios. These capabilities facilitate different use cases to extend the conventional calibration process of ADAS/ADS through virtual testing. This paper discusses the different use cases of virtual calibration and methods to achieve the desired objectives. A special focus is on a multi-scenario-level method that can be used to iteratively calibrate ADAS/ADS for optimal behavior in a variety of scenarios, resulting in a more comfortable, safe, and natural behavior of the system and still a feasible number of test cases. The presented methods are implemented for the virtual calibration of an Adaptive Cruise Control model for evaluation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
虚拟ADAS/ADS仿真标定用例与方法
复杂的高级驾驶辅助系统(ADAS)和自动驾驶系统(ADS)的集成、测试和发布是自动驾驶领域的主要挑战之一。为了使系统被客户所接受,并在市场上竞争,它们必须具有功能,舒适,安全,高效和自然的驾驶行为。校准过程在实现这一目标方面变得越来越重要。复杂的ADAS/ADS需要在大量不同场景下优化相互作用的校准参数,这是传统校准方法难以以可行的努力和成本完成的任务。模拟中的虚拟校准可以在各种情况下对校准参数的不同数据集进行可重复和自动化的测试。这些功能有助于不同的用例通过虚拟测试扩展ADAS/ADS的传统校准过程。本文讨论了虚拟校准的不同用例和实现预期目标的方法。特别关注的是多场景级方法,该方法可用于迭代校准ADAS/ADS在各种场景中的最佳行为,从而产生更舒适、安全和自然的系统行为,并且仍然具有可行的测试用例数量。将所提出的方法应用于自适应巡航控制评估模型的虚拟标定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Feedback Field-Weakening Techniques for Synchronous Machines with Permanent Magnets Synthetic Drivers’ Performance Measures Related to Vehicle Dynamics to Control Road Safety in Curves Diesel Particle Filter Requirements for Euro 7 Technology Continuously Regenerating Heavy-Duty Applications Hybridisation Concept of Light Vehicles Utilising an Electrified Planetary Gear Set A Co-Simulation Platform with Tire and Brake Thermal Model for the Analysis and Reproduction of Blanking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1