{"title":"Artificial Neural Networks and Their Applications in Business","authors":"Trevor J. Bihl, William A. Young II, G. Weckman","doi":"10.4018/978-1-5225-2255-3.CH576","DOIUrl":null,"url":null,"abstract":"Despite the natural advantage humans have for recognizing and interpreting patterns, large and complex datasets, as in big data, preclude efficient human analysis. Artificial neural networks (ANNs) provide a family of pattern recognition approaches for prediction, clustering, and classification applicable to KDD with ANN model complexity ranging from simple (for small problems) to highly complex (for large issues). To provide a starting point for readers, this chapter first describes foundational concepts that relate to ANNs. A listing of commonly used ANN methods, heuristics, and criteria for initializing ANNs are then discussed. Common pre- and post-data processing methods for dimensionality reduction and data quality issues are then described. The authors then provide a tutorial example of ANN analysis. Finally, the authors list and describe applications of ANNs to specific business-related endeavors for further reading.","PeriodicalId":52560,"journal":{"name":"Foundations and Trends in Human-Computer Interaction","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-2255-3.CH576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the natural advantage humans have for recognizing and interpreting patterns, large and complex datasets, as in big data, preclude efficient human analysis. Artificial neural networks (ANNs) provide a family of pattern recognition approaches for prediction, clustering, and classification applicable to KDD with ANN model complexity ranging from simple (for small problems) to highly complex (for large issues). To provide a starting point for readers, this chapter first describes foundational concepts that relate to ANNs. A listing of commonly used ANN methods, heuristics, and criteria for initializing ANNs are then discussed. Common pre- and post-data processing methods for dimensionality reduction and data quality issues are then described. The authors then provide a tutorial example of ANN analysis. Finally, the authors list and describe applications of ANNs to specific business-related endeavors for further reading.
期刊介绍:
Foundations and Trends® in Human-Computer Interaction publishes surveys and tutorials in the following topics: - History of the research community - Design and Evaluation - Theory - Technology - Computer Supported Cooperative Work - Interdisciplinary influence - Advanced topics and trends - Information visualization