{"title":"Functional fermented carob milk: Probiotic variability and polyphenolic profile","authors":"Y. Chait, A. Gunenc, F. Bendali, F. Hosseinian","doi":"10.31665/jfb.2021.14273","DOIUrl":null,"url":null,"abstract":"This study aimed to develop a synbiotic fermented milk with 4% carob powder (CB) as a functional ingredient and using Lactobacillus brevis as a new isolated probiotics strain. Physicochemical characteristics, probiotic viability, total phenolic content (TPC) and antioxidant capacity, antibacterial activity as well as the hypoglycemia activity of carob fermented milk were measured during a cold storage and gastro-intestinal digestion. CB addition to fermented milk improved the growth of Lactobacillus brevis and maintained their viability during the storage period (8 log CFU/g) and after digestion (7 log CFU/g). Carob fermented milk displayed higher TPC and higher antioxidant capacity during the storage. The digestion resulted in the release of bioaccessible phenolics where gallic acid (441%) and (+)-catechin (486%) were the most quantified phenolic compounds; thus, the inhibition of α-amylase (52%), α-glucosidase (37%) activity and higher antibacterial potential. These results demonstrate the potentials of carob fermented milk to be an important source of viable probiotics and bioaccessible polyphenols.","PeriodicalId":15882,"journal":{"name":"Journal of Food Bioactives","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Bioactives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31665/jfb.2021.14273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This study aimed to develop a synbiotic fermented milk with 4% carob powder (CB) as a functional ingredient and using Lactobacillus brevis as a new isolated probiotics strain. Physicochemical characteristics, probiotic viability, total phenolic content (TPC) and antioxidant capacity, antibacterial activity as well as the hypoglycemia activity of carob fermented milk were measured during a cold storage and gastro-intestinal digestion. CB addition to fermented milk improved the growth of Lactobacillus brevis and maintained their viability during the storage period (8 log CFU/g) and after digestion (7 log CFU/g). Carob fermented milk displayed higher TPC and higher antioxidant capacity during the storage. The digestion resulted in the release of bioaccessible phenolics where gallic acid (441%) and (+)-catechin (486%) were the most quantified phenolic compounds; thus, the inhibition of α-amylase (52%), α-glucosidase (37%) activity and higher antibacterial potential. These results demonstrate the potentials of carob fermented milk to be an important source of viable probiotics and bioaccessible polyphenols.