{"title":"Accent Classification of Native and Non-Native Children using Harmonic Pitch","authors":"Kodali Radha, Mohan Bansal, Shaik Mulla Shabber","doi":"10.1109/AISP53593.2022.9760588","DOIUrl":null,"url":null,"abstract":"To combat the Covid-19 outbreak, the education system shifted away from the classroom to distinct e-learning on digital platforms, which made effective use of voice-based recognition systems, especially for preliterate children. Children’s speech recognition systems face multiple challenges owing to their immature vocal tracts, and they demand more intelligence due to the fact that children with diverse accents utter words differently. Accent refers to a unique style of pronouncing a language, particularly one associated with a specific nation, place, or socio-economic background. This paper aims to extract reliable acoustic and prosodic speech cues of accent for classification of native and non-native preschool children using harmonic pitch estimation along with Mel Frequency Cepstral Coefficients (MFCCs) to train the k-Nearest Neighbour (k-NN) classifier. The experimental results reveal that the proposed robust model outperforms various feature extractors in accent classification of native and non-native children in terms of accuracy & F-Measure and more discriminate against noisy environments.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
To combat the Covid-19 outbreak, the education system shifted away from the classroom to distinct e-learning on digital platforms, which made effective use of voice-based recognition systems, especially for preliterate children. Children’s speech recognition systems face multiple challenges owing to their immature vocal tracts, and they demand more intelligence due to the fact that children with diverse accents utter words differently. Accent refers to a unique style of pronouncing a language, particularly one associated with a specific nation, place, or socio-economic background. This paper aims to extract reliable acoustic and prosodic speech cues of accent for classification of native and non-native preschool children using harmonic pitch estimation along with Mel Frequency Cepstral Coefficients (MFCCs) to train the k-Nearest Neighbour (k-NN) classifier. The experimental results reveal that the proposed robust model outperforms various feature extractors in accent classification of native and non-native children in terms of accuracy & F-Measure and more discriminate against noisy environments.