Mondrian Multidimensional K-Anonymity

K. LeFevre, D. DeWitt, R. Ramakrishnan
{"title":"Mondrian Multidimensional K-Anonymity","authors":"K. LeFevre, D. DeWitt, R. Ramakrishnan","doi":"10.1109/ICDE.2006.101","DOIUrl":null,"url":null,"abstract":"K-Anonymity has been proposed as a mechanism for protecting privacy in microdata publishing, and numerous recoding \"models\" have been considered for achieving ��anonymity. This paper proposes a new multidimensional model, which provides an additional degree of flexibility not seen in previous (single-dimensional) approaches. Often this flexibility leads to higher-quality anonymizations, as measured both by general-purpose metrics and more specific notions of query answerability. Optimal multidimensional anonymization is NP-hard (like previous optimal ��-anonymity problems). However, we introduce a simple greedy approximation algorithm, and experimental results show that this greedy algorithm frequently leads to more desirable anonymizations than exhaustive optimal algorithms for two single-dimensional models.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"1 1","pages":"25-25"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1209","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1209

Abstract

K-Anonymity has been proposed as a mechanism for protecting privacy in microdata publishing, and numerous recoding "models" have been considered for achieving ��anonymity. This paper proposes a new multidimensional model, which provides an additional degree of flexibility not seen in previous (single-dimensional) approaches. Often this flexibility leads to higher-quality anonymizations, as measured both by general-purpose metrics and more specific notions of query answerability. Optimal multidimensional anonymization is NP-hard (like previous optimal ��-anonymity problems). However, we introduce a simple greedy approximation algorithm, and experimental results show that this greedy algorithm frequently leads to more desirable anonymizations than exhaustive optimal algorithms for two single-dimensional models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒙德里安多维k -匿名
k -匿名被认为是微数据发布中保护隐私的一种机制,许多重新编码“模型”被认为可以实现“匿名”。本文提出了一种新的多维模型,它提供了以前(单维)方法所没有的额外的灵活性。这种灵活性通常会导致更高质量的匿名化,这可以通过通用指标和更具体的查询可回答性概念来衡量。最优多维匿名化是np困难的(就像之前的最优匿名问题一样)。然而,我们引入了一种简单的贪婪近似算法,实验结果表明,对于两个单维模型,这种贪婪算法通常比穷举最优算法产生更理想的匿名化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Adaptive Memory Management in Data Stream Systems Revision Processing in a Stream Processing Engine: A High-Level Design SUBSKY: Efficient Computation of Skylines in Subspaces How to Determine a Good Multi-Programming Level for External Scheduling Warehousing and Analyzing Massive RFID Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1