Jiahua Qiu , Yue Jing , Wang Peng , Lili Du , Yujie Hu
{"title":"Identifying critical transfer zones to coordinate transit with on-demand services using crowdsourced trajectory data","authors":"Jiahua Qiu , Yue Jing , Wang Peng , Lili Du , Yujie Hu","doi":"10.1080/15472450.2022.2132389","DOIUrl":null,"url":null,"abstract":"<div><p>This study develops a data-driven approach for identifying critical transfer zones in the city to facilitate the coordination of transit and emerging on-demand services. First, the methods convert the trajectories into a 3 D grid with an optimal cube size. Built upon that, we zoom in and study the trajectory density of each mode in a cube and present the results by heatmaps. After that, we zoom out and aggregate those cube information fragments through the clustering algorithms to explore two critical patterns: the ridesharing swarm (RS) zones where many ridesharing trips go through, and the “sandwich pattern” zones where a transit trajectory dominant zone is sandwiched by two ridesharing trajectory dominant zones. Our numerical analysis confirms that these RS zones are well correlated to the promising areas/corridors for integrating transit and on-demand services; the “sandwich patterns” help discover first/last mile (FLM) zones. Last, we further develop a two-channel deep learning network to predict the variation of the FLM gaps so that adaptive services can be planned. A case study based on the field data of the second ring region of Chengdu, China confirms the effectiveness and capability of our analysis approach.</p></div>","PeriodicalId":54792,"journal":{"name":"Journal of Intelligent Transportation Systems","volume":"28 3","pages":"Pages 386-408"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1547245023000245","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This study develops a data-driven approach for identifying critical transfer zones in the city to facilitate the coordination of transit and emerging on-demand services. First, the methods convert the trajectories into a 3 D grid with an optimal cube size. Built upon that, we zoom in and study the trajectory density of each mode in a cube and present the results by heatmaps. After that, we zoom out and aggregate those cube information fragments through the clustering algorithms to explore two critical patterns: the ridesharing swarm (RS) zones where many ridesharing trips go through, and the “sandwich pattern” zones where a transit trajectory dominant zone is sandwiched by two ridesharing trajectory dominant zones. Our numerical analysis confirms that these RS zones are well correlated to the promising areas/corridors for integrating transit and on-demand services; the “sandwich patterns” help discover first/last mile (FLM) zones. Last, we further develop a two-channel deep learning network to predict the variation of the FLM gaps so that adaptive services can be planned. A case study based on the field data of the second ring region of Chengdu, China confirms the effectiveness and capability of our analysis approach.
期刊介绍:
The Journal of Intelligent Transportation Systems is devoted to scholarly research on the development, planning, management, operation and evaluation of intelligent transportation systems. Intelligent transportation systems are innovative solutions that address contemporary transportation problems. They are characterized by information, dynamic feedback and automation that allow people and goods to move efficiently. They encompass the full scope of information technologies used in transportation, including control, computation and communication, as well as the algorithms, databases, models and human interfaces. The emergence of these technologies as a new pathway for transportation is relatively new.
The Journal of Intelligent Transportation Systems is especially interested in research that leads to improved planning and operation of the transportation system through the application of new technologies. The journal is particularly interested in research that adds to the scientific understanding of the impacts that intelligent transportation systems can have on accessibility, congestion, pollution, safety, security, noise, and energy and resource consumption.
The journal is inter-disciplinary, and accepts work from fields of engineering, economics, planning, policy, business and management, as well as any other disciplines that contribute to the scientific understanding of intelligent transportation systems. The journal is also multi-modal, and accepts work on intelligent transportation for all forms of ground, air and water transportation. Example topics include the role of information systems in transportation, traffic flow and control, vehicle control, routing and scheduling, traveler response to dynamic information, planning for ITS innovations, evaluations of ITS field operational tests, ITS deployment experiences, automated highway systems, vehicle control systems, diffusion of ITS, and tools/software for analysis of ITS.