First Order Fuzzy Transform for Images Compression

F. D. Martino, S. Sessa, I. Perfilieva
{"title":"First Order Fuzzy Transform for Images Compression","authors":"F. D. Martino, S. Sessa, I. Perfilieva","doi":"10.4236/JSIP.2017.83012","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new image compression method based on the direct and inverse F1-transform, a generalization of the concept of fuzzy transform. Under weak compression rates, this method improves the quality of the images with respect to the classical method based on the fuzzy transform.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"12 1","pages":"178-194"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2017.83012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we present a new image compression method based on the direct and inverse F1-transform, a generalization of the concept of fuzzy transform. Under weak compression rates, this method improves the quality of the images with respect to the classical method based on the fuzzy transform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像压缩的一阶模糊变换
本文对模糊变换的概念进行了推广,提出了一种基于f1正逆变换的图像压缩方法。在弱压缩率下,该方法相对于基于模糊变换的经典方法,提高了图像的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Variational Mode Decomposition for Bearing Fault Detection White Blood Cells Detection Using Spectral Tresholding 3D Ergonomic Board: Kids Teaching and Learning Proposition Design and Evaluation of a Distributed Security Framework for the Internet of Things Improved Bearing Fault Diagnosis by Feature Extraction Based on GLCM, Fusion of Selection Methods, and Multiclass-Naïve Bayes Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1