Surface Enhanced Raman Spectroscopic Studies on Surface Plasmon Resonance Catalytic Activity of TiO2-Metal Nanocomposites

IF 0.4 Q4 NANOSCIENCE & NANOTECHNOLOGY Nano Hybrids and Composites Pub Date : 2023-02-03 DOI:10.4028/p-41td47
Yan Lu, Minmin Xu, Chen Zhang, Ya-xian Yuan, Jianlin Yao
{"title":"Surface Enhanced Raman Spectroscopic Studies on Surface Plasmon Resonance Catalytic Activity of TiO2-Metal Nanocomposites","authors":"Yan Lu, Minmin Xu, Chen Zhang, Ya-xian Yuan, Jianlin Yao","doi":"10.4028/p-41td47","DOIUrl":null,"url":null,"abstract":"The rapid recombination of carriers on plasmon metal nanoparticles leads to relatively low efficiency of traditional photocatalysts. The combination of a metal and a semiconductor allows to the separation of hot electrons and holes to improve photocatalytic efficiency. In this study, Au nanoparticles were integrated with semiconductor TiO2 nanoparticles of different sizes to improve the photocatalytic activity. Various techniques have been developed to study the mechanism of catalytic activity, the significance of band bending in the space-charge region within metal–semiconductor nanocomposites, and the built-in electric field. The results provide theoretical and experimental evidence for the design of a high-performance surface plasmon resonance (SPR) photocatalyst. To reveal the interface band structure, surface-enhanced Raman spectroscopy (SERS) was employed to analyze the band structure of the TiO2–metal composites. This approach was based on the electrochemical Stark effect and a molecular probe strategy, combined with X-ray photoelectron spectroscopy (XPS), Electrochemical impedance spectroscopy (EIS), and other techniques at the molecular level. The results demonstrated that charge transfer occurred spontaneously between the Au nanoparticles and TiO2, and that the TiO2–metal interface constitutes a Schottky barrier. Moreover, the size of the TiO2 nanoparticles affects the degree of band bending. Optimal state matching was achieved with TiO2 (60 nm)–Au, improving the photocatalytic activity of the nanocomposite. The photocatalytic coupling reaction of p-aminothiophenol (PATP) acted as a probe to study the catalytic performance of TiO2–metal nanocomposites. The results revealed that the introduction of TiO2 improves the SPR catalytic activity of Au, mainly through the efficient separation of electrons and holes at the TiO2–metal interface.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"1 1","pages":"1 - 14"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-41td47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid recombination of carriers on plasmon metal nanoparticles leads to relatively low efficiency of traditional photocatalysts. The combination of a metal and a semiconductor allows to the separation of hot electrons and holes to improve photocatalytic efficiency. In this study, Au nanoparticles were integrated with semiconductor TiO2 nanoparticles of different sizes to improve the photocatalytic activity. Various techniques have been developed to study the mechanism of catalytic activity, the significance of band bending in the space-charge region within metal–semiconductor nanocomposites, and the built-in electric field. The results provide theoretical and experimental evidence for the design of a high-performance surface plasmon resonance (SPR) photocatalyst. To reveal the interface band structure, surface-enhanced Raman spectroscopy (SERS) was employed to analyze the band structure of the TiO2–metal composites. This approach was based on the electrochemical Stark effect and a molecular probe strategy, combined with X-ray photoelectron spectroscopy (XPS), Electrochemical impedance spectroscopy (EIS), and other techniques at the molecular level. The results demonstrated that charge transfer occurred spontaneously between the Au nanoparticles and TiO2, and that the TiO2–metal interface constitutes a Schottky barrier. Moreover, the size of the TiO2 nanoparticles affects the degree of band bending. Optimal state matching was achieved with TiO2 (60 nm)–Au, improving the photocatalytic activity of the nanocomposite. The photocatalytic coupling reaction of p-aminothiophenol (PATP) acted as a probe to study the catalytic performance of TiO2–metal nanocomposites. The results revealed that the introduction of TiO2 improves the SPR catalytic activity of Au, mainly through the efficient separation of electrons and holes at the TiO2–metal interface.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
tio2 -金属纳米复合材料表面等离子体共振催化活性的表面增强拉曼光谱研究
等离子体金属纳米粒子上载流子的快速重组导致传统光催化剂效率相对较低。金属和半导体的结合允许热电子和空穴的分离,以提高光催化效率。本研究将Au纳米粒子与不同尺寸的半导体TiO2纳米粒子集成,以提高光催化活性。人们已经开发了各种技术来研究金属-半导体纳米复合材料的催化活性机制、空间电荷区能带弯曲的意义以及内置电场。研究结果为设计高性能表面等离子体共振(SPR)光催化剂提供了理论和实验依据。为了揭示界面能带结构,采用表面增强拉曼光谱(SERS)分析了tio2 -金属复合材料的能带结构。该方法基于电化学Stark效应和分子探针策略,结合x射线光电子能谱(XPS)、电化学阻抗谱(EIS)等分子水平技术。结果表明,Au纳米粒子与TiO2之间自发发生电荷转移,TiO2 -金属界面形成肖特基势垒。此外,TiO2纳米粒子的尺寸影响能带弯曲的程度。TiO2 (60 nm) -Au达到最佳状态匹配,提高了纳米复合材料的光催化活性。以对氨基噻吩(PATP)光催化偶联反应为探针,研究了tio2 -金属纳米复合材料的催化性能。结果表明,TiO2的引入提高了Au的SPR催化活性,主要是通过TiO2 -金属界面上电子和空穴的有效分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Hybrids and Composites
Nano Hybrids and Composites NANOSCIENCE & NANOTECHNOLOGY-
自引率
0.00%
发文量
47
期刊最新文献
Optimization of the Printing Parameters of Glass Fiber Reinforced PA6 Using Factorial Experiments Eco-Friendly of Sound-Absorbing Material Based on Polyurethane-Urea with Natural Fiber Waste Numerical and Experimental Study for Al4043A Aluminium-Silicium Alloy Fabricated by Wire Arc Additive Manufacturing under Dynamic Tests Aspects Regarding of Nanomaterials and Nanocomposites in 3D Printing Technology Process Development for Application in Biomedicine Compressive Behavior of Various BCC Lattice Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1