Y. Kao, Calvin Gan, Alicia Corlett, Alexander Rhodes, D. Sivaratnam, B. Lim
{"title":"Indirect Lung Absorbed Dose Verification by 90Y PET/CT and Complete Lung Protection by Hepatic Vein Balloon Occlusion: Proof of Concept","authors":"Y. Kao, Calvin Gan, Alicia Corlett, Alexander Rhodes, D. Sivaratnam, B. Lim","doi":"10.2967/jnmt.121.263422","DOIUrl":null,"url":null,"abstract":"Visual Abstract Postradioembolization lung absorbed dose verification was historically problematic and impractical in clinical practice. We devised an indirect method using 90Y PET/CT. Methods: Conceptually, true lung activity is simply the difference between the total prepared activity minus all activity below the diaphragm and residual activity within delivery apparatus. Patient-specific lung mass is measured by CT densitovolumetry. True lung mean absorbed dose is calculated by MIRD macrodosimetry. Results: Proof of concept is shown in a hepatocellular carcinoma patient with a high lung shunt fraction of 26%, where evidence of technically successful hepatic vein balloon occlusion for radioembolization lung protection was required. Indirect lung activity quantification showed the postradioembolization lung shunt fraction to be reduced to approximately 1% with a true lung mean absorbed dose of approximately 1 Gy, suggesting complete lung protection by hepatic vein balloon occlusion. Conclusion: We discuss possible clinical applications such as lung absorbed dose verification, refining the limits of lung tolerance, and the concept of massive activity radioembolization.","PeriodicalId":22799,"journal":{"name":"The Journal of Nuclear Medicine Technology","volume":"38 1","pages":"240 - 243"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Nuclear Medicine Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnmt.121.263422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Visual Abstract Postradioembolization lung absorbed dose verification was historically problematic and impractical in clinical practice. We devised an indirect method using 90Y PET/CT. Methods: Conceptually, true lung activity is simply the difference between the total prepared activity minus all activity below the diaphragm and residual activity within delivery apparatus. Patient-specific lung mass is measured by CT densitovolumetry. True lung mean absorbed dose is calculated by MIRD macrodosimetry. Results: Proof of concept is shown in a hepatocellular carcinoma patient with a high lung shunt fraction of 26%, where evidence of technically successful hepatic vein balloon occlusion for radioembolization lung protection was required. Indirect lung activity quantification showed the postradioembolization lung shunt fraction to be reduced to approximately 1% with a true lung mean absorbed dose of approximately 1 Gy, suggesting complete lung protection by hepatic vein balloon occlusion. Conclusion: We discuss possible clinical applications such as lung absorbed dose verification, refining the limits of lung tolerance, and the concept of massive activity radioembolization.