Phase and Structural Transformations in the Fe-Based Alloys under the Combined High-Energy Treatment

IF 1.3 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Uspekhi Fiziki Metallov-Progress in Physics of Metals Pub Date : 2022-06-01 DOI:10.15407/ufm.23.02.296
V. Danilchenko, Ye. M. Dzevin, O. Semyrga
{"title":"Phase and Structural Transformations in the Fe-Based Alloys under the Combined High-Energy Treatment","authors":"V. Danilchenko, Ye. M. Dzevin, O. Semyrga","doi":"10.15407/ufm.23.02.296","DOIUrl":null,"url":null,"abstract":"Applying the x-ray, metallographic, and microdurometric methods, the phase composition and structural–stress state of the Fe-based alloys under the impact of electrospark treatment in combination with laser processing are studied and analysed. As shown, the structural–phase state of electrospark coating on the steel substrate is determined by several factors. They are the dissociation of WC carbide on the surface of alloying electrode on the W2C and W components followed by their erosion, an interaction of erosion products with elements of the interelectrode medium (C, N, O), an interdiffusion of the coating elements and a steel substrate, and the ascending diffusion of C from the substrate near-surface layers. As revealed, the heterophase coating and near-surface layers of substrate possess a complex structural–stress state. As shown, the residual stresses in different phase components have been formed through different regularities: the tensile stresses in the TiC-based compound, while the compressed stresses in the W2C, W, and Feα. The selective effect of laser heating of the coating on the stresses of different signs is revealed.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":"83 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ufm.23.02.296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Applying the x-ray, metallographic, and microdurometric methods, the phase composition and structural–stress state of the Fe-based alloys under the impact of electrospark treatment in combination with laser processing are studied and analysed. As shown, the structural–phase state of electrospark coating on the steel substrate is determined by several factors. They are the dissociation of WC carbide on the surface of alloying electrode on the W2C and W components followed by their erosion, an interaction of erosion products with elements of the interelectrode medium (C, N, O), an interdiffusion of the coating elements and a steel substrate, and the ascending diffusion of C from the substrate near-surface layers. As revealed, the heterophase coating and near-surface layers of substrate possess a complex structural–stress state. As shown, the residual stresses in different phase components have been formed through different regularities: the tensile stresses in the TiC-based compound, while the compressed stresses in the W2C, W, and Feα. The selective effect of laser heating of the coating on the stresses of different signs is revealed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复合高能处理下铁基合金的相与组织转变
采用x射线、金相、显微硬度等方法,研究和分析了电火花结合激光加工对铁基合金的相组成和组织应力状态的影响。如图所示,电火花涂层在钢基体上的组织相状态是由几个因素决定的。它们是合金电极表面WC碳化物在W2C和W组分上的解离和侵蚀,侵蚀产物与电极间介质元素(C、N、O)的相互作用,涂层元素与钢基体的相互扩散,以及C从基体近表层向上扩散。结果表明,异相涂层和衬底近表层具有复杂的结构应力状态。如图所示,不同相组分的残余应力形成规律不同:tic基化合物中残余应力为拉伸应力,而W2C、W和Feα中残余应力为压缩应力。揭示了激光加热涂层对不同标志应力的选择性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
18.80%
发文量
21
审稿时长
13 weeks
期刊介绍: The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.
期刊最新文献
Modern Fillers of Metal and Polymer Matrices Influence of Modification on the Characteristics of Reinforcing Steels Intended for Reinforced Concrete Structures On the Solubility of Hydrogen in Metals and Alloys Methods of Improving the Structure and Properties of High-Speed Steels Basics of Additive Manufacturing Processes for High-Entropy Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1