Amyloid Oligomer Structures and Toxicity

C. Glabe
{"title":"Amyloid Oligomer Structures and Toxicity","authors":"C. Glabe","doi":"10.2174/1874196700902010222","DOIUrl":null,"url":null,"abstract":"Amyloid accumulation is commonly associated with a number of important human degenerative diseases and recent findings indicate that soluble amyloid oligomers may represent the primary pathological species in degenerative diseases. Amyloid oligomers are structurally and morphologically diverse, raising the question on whether this diversity is pathologically significant and whether different types of oligomers may have different toxic activities. Many of the amyloids associated with neurodegenerative diseases form three immunologically distinct types of oligomers. Fibrillar oligomers are structurally related to fibrils and may represent small pieces of fibrils or fibril protofilaments. Prefibrillar oligomers are kinetic intermediates in fibril formation and annular protofibrils that resemble membrane pores. These three classes of oligomers share common structures and toxic activities. Focus on these common mechanisms of toxicity provides a means of simplifying the list of primary disease mechanisms and opens the possibility of developing broad spectrum therapeutics that target several amyloid related degenerative diseases.","PeriodicalId":22949,"journal":{"name":"The Open Biology Journal","volume":"30 1","pages":"222-227"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Biology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874196700902010222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Amyloid accumulation is commonly associated with a number of important human degenerative diseases and recent findings indicate that soluble amyloid oligomers may represent the primary pathological species in degenerative diseases. Amyloid oligomers are structurally and morphologically diverse, raising the question on whether this diversity is pathologically significant and whether different types of oligomers may have different toxic activities. Many of the amyloids associated with neurodegenerative diseases form three immunologically distinct types of oligomers. Fibrillar oligomers are structurally related to fibrils and may represent small pieces of fibrils or fibril protofilaments. Prefibrillar oligomers are kinetic intermediates in fibril formation and annular protofibrils that resemble membrane pores. These three classes of oligomers share common structures and toxic activities. Focus on these common mechanisms of toxicity provides a means of simplifying the list of primary disease mechanisms and opens the possibility of developing broad spectrum therapeutics that target several amyloid related degenerative diseases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
淀粉样蛋白低聚物结构及其毒性
淀粉样蛋白积累通常与许多重要的人类退行性疾病有关,最近的研究结果表明,可溶性淀粉样蛋白低聚物可能是退行性疾病的主要病理物种。淀粉样蛋白低聚物在结构和形态上具有多样性,这就提出了这种多样性是否具有病理学意义以及不同类型的低聚物是否具有不同的毒性活性的问题。许多与神经退行性疾病相关的淀粉样蛋白形成三种免疫学上不同类型的低聚物。原纤维低聚物在结构上与原纤维有关,可以是小块的原纤维或原纤维原丝。原纤维前低聚物是原纤维形成和环状原纤维类似膜孔的动力学中间体。这三类低聚物具有共同的结构和毒性活性。关注这些常见的毒性机制提供了一种简化原发疾病机制的方法,并开启了开发针对几种淀粉样蛋白相关退行性疾病的广谱治疗方法的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational Analysis, in silico Functional Annotation and Expression of Recombinant mycobacterium, PE_PGRS Protein Biomarkers Exploring Potential of Quantum Computing in Creating Smart Healthcare Role of Flavonoids against COVID-19 Composition and Quality Standards of Naturally Derived Anti Tan Medicine Human Amniotic Fluid for the Treatment of Hospitalized, Symptomatic, and Laboratory-verified SARS-CoV-2 Patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1