Tomer Sagi, A. Gal, Omer Barkol, Ruth Bergman, Alexander Avram
{"title":"Multi-Source Uncertain Entity Resolution at Yad Vashem: Transforming Holocaust Victim Reports into People","authors":"Tomer Sagi, A. Gal, Omer Barkol, Ruth Bergman, Alexander Avram","doi":"10.1145/2882903.2903737","DOIUrl":null,"url":null,"abstract":"In this work we describe an entity resolution project performed at Yad Vashem, the central repository of Holocaust-era information. The Yad Vashem dataset is unique with respect to classic entity resolution, by virtue of being both massively multi-source and by requiring multi-level entity resolution. With today's abundance of information sources, this project sets an example for multi-source resolution on a big-data scale. We discuss a set of requirements that led us to choose the MFIBlocks entity resolution algorithm in achieving the goals of the application. We also provide a machine learning approach, based upon decision trees to transform soft clusters into ranked clustering of records, representing possible entities. An extensive empirical evaluation demonstrates the unique properties of this dataset, highlighting the shortcomings of current methods and proposing avenues for future research in this realm.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2903737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this work we describe an entity resolution project performed at Yad Vashem, the central repository of Holocaust-era information. The Yad Vashem dataset is unique with respect to classic entity resolution, by virtue of being both massively multi-source and by requiring multi-level entity resolution. With today's abundance of information sources, this project sets an example for multi-source resolution on a big-data scale. We discuss a set of requirements that led us to choose the MFIBlocks entity resolution algorithm in achieving the goals of the application. We also provide a machine learning approach, based upon decision trees to transform soft clusters into ranked clustering of records, representing possible entities. An extensive empirical evaluation demonstrates the unique properties of this dataset, highlighting the shortcomings of current methods and proposing avenues for future research in this realm.