SAN Optimization for High Performance Storage with RDMA Data Transfer

Jae-Woo Choi, Youngjin Yu, Hyeonsang Eom, H. Yeom, Dongin Shin
{"title":"SAN Optimization for High Performance Storage with RDMA Data Transfer","authors":"Jae-Woo Choi, Youngjin Yu, Hyeonsang Eom, H. Yeom, Dongin Shin","doi":"10.1109/SC.Companion.2012.15","DOIUrl":null,"url":null,"abstract":"Today's server environments consist of many machines constructing clusters for distributed computing system or storage area networks (SAN) for effectively processing or saving enormous data. In these kinds of server environments, backend-storages are usually the bottleneck of the overall system. But it is not enough to simply replace the devices with better ones to exploit their performance benefits. In other words, proper optimizations are needed to fully utilize their performance gains. In this work, we first applied a high performance device as a backend-storage to the existing SAN solution, and found that it could not utilize the low latency and high bandwidth of the device, especially in case of small sized random I/O pattern even though a high speed network was used. To address this problem, we propose a new design that contains three optimizations: 1) removing software overheads to lower I/O latency; 2) parallelism to utilize the high bandwidth of the device; 3) temporal merge mechanism to reduce network overhead. We implemented them as a prototype and found that our solution makes substantial performance improvements in terms of both the latency and bandwidth.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"14 1","pages":"24-29"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Today's server environments consist of many machines constructing clusters for distributed computing system or storage area networks (SAN) for effectively processing or saving enormous data. In these kinds of server environments, backend-storages are usually the bottleneck of the overall system. But it is not enough to simply replace the devices with better ones to exploit their performance benefits. In other words, proper optimizations are needed to fully utilize their performance gains. In this work, we first applied a high performance device as a backend-storage to the existing SAN solution, and found that it could not utilize the low latency and high bandwidth of the device, especially in case of small sized random I/O pattern even though a high speed network was used. To address this problem, we propose a new design that contains three optimizations: 1) removing software overheads to lower I/O latency; 2) parallelism to utilize the high bandwidth of the device; 3) temporal merge mechanism to reduce network overhead. We implemented them as a prototype and found that our solution makes substantial performance improvements in terms of both the latency and bandwidth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RDMA数据传输的高性能存储SAN优化
今天的服务器环境由许多机器组成,这些机器为分布式计算系统或存储区域网络(SAN)构建集群,以有效地处理或保存大量数据。在这些类型的服务器环境中,后端存储通常是整个系统的瓶颈。但是,仅仅用更好的设备替换旧设备来利用它们的性能优势是不够的。换句话说,需要适当的优化来充分利用它们的性能增益。在这项工作中,我们首先将高性能设备作为后端存储应用到现有的SAN解决方案中,发现即使使用高速网络,也无法利用设备的低延迟和高带宽,特别是在小尺寸随机I/O模式的情况下。为了解决这个问题,我们提出了一个包含三个优化的新设计:1)消除软件开销以降低I/O延迟;2)并行性以利用器件的高带宽;3)时间合并机制,减少网络开销。我们将它们作为原型实现,并发现我们的解决方案在延迟和带宽方面都有实质性的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1