A Connectivity-Prediction Algorithm and its Application in Active Cooperative Localization for Multi-Robot Systems

Liang Zhang, Zexu Zhang, R. Siegwart, Jen Jen Chung
{"title":"A Connectivity-Prediction Algorithm and its Application in Active Cooperative Localization for Multi-Robot Systems","authors":"Liang Zhang, Zexu Zhang, R. Siegwart, Jen Jen Chung","doi":"10.1109/ICRA40945.2020.9197083","DOIUrl":null,"url":null,"abstract":"This paper presents a method for predicting the probability of future connectivity between mobile robots with range-limited communication. In particular, we focus on its application to active motion planning for cooperative localization (CL). The probability of connection is modeled by the distribution of quadratic forms in random normal variables and is computed by the infinite power series expansion theorem. A finite-term approximation is made to realize the computational feasibility and three more modifications are designed to handle the adverse impacts introduced by the omission of the higher order series terms. On the basis of this algorithm, an active and CL problem with leader-follower architecture is then reformulated into a Markov Decision Process (MDP) with a one-step planning horizon, and the optimal motion strategy is generated by minimizing the expected cost of the MDP. Extensive simulations and comparisons are presented to show the effectiveness and efficiency of both the proposed prediction algorithm and the MDP model.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"14 1","pages":"9824-9830"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a method for predicting the probability of future connectivity between mobile robots with range-limited communication. In particular, we focus on its application to active motion planning for cooperative localization (CL). The probability of connection is modeled by the distribution of quadratic forms in random normal variables and is computed by the infinite power series expansion theorem. A finite-term approximation is made to realize the computational feasibility and three more modifications are designed to handle the adverse impacts introduced by the omission of the higher order series terms. On the basis of this algorithm, an active and CL problem with leader-follower architecture is then reformulated into a Markov Decision Process (MDP) with a one-step planning horizon, and the optimal motion strategy is generated by minimizing the expected cost of the MDP. Extensive simulations and comparisons are presented to show the effectiveness and efficiency of both the proposed prediction algorithm and the MDP model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种连接预测算法及其在多机器人系统主动协同定位中的应用
本文提出了一种基于距离限制的移动机器人未来连接概率预测方法。重点研究了其在协同定位(CL)主动运动规划中的应用。连接概率由随机正态变量的二次型分布建模,并由无穷幂级数展开定理计算。为了实现计算可行性,采用了有限项近似,并设计了另外三种修改,以处理由于省略高阶级数项而带来的不利影响。在此基础上,将具有leader-follower结构的主动CL问题转化为具有一步规划视界的马尔可夫决策过程(MDP),并通过最小化MDP的期望成本来生成最优运动策略。大量的仿真和比较表明了所提出的预测算法和MDP模型的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1