Identification of Inter‐Species Transmission of Prion Strains

T. Baron
{"title":"Identification of Inter‐Species Transmission of Prion Strains","authors":"T. Baron","doi":"10.1093/JNEN/61.5.377","DOIUrl":null,"url":null,"abstract":"The concern of the potential transmission of animal spongiform encephalopathies to humans, which arose as soon as the interspecies transmission of these diseases was recognized, has been reinforced with the emergence of bovine spongiform encephalopathy (BSE) in cattle. Recent experimental findings suggest that the infectious agent causing BSE in cattle can lead to the occurrence of a new form of Creutzfeldt-Jakob disease in humans. These findings help us understand how the transmission to humans of an animal disease may be recognized. This can involve an indirect approach through the analysis of neurodegeneration, either in the disease host, or more specifically, in genetically well-defined experimental hosts to which the disease can be transmitted. Recent experimental studies have also shown that the different molecular features of the abnormal form of the prion protein, which accumulates in the infected tissues, can provide important clues to the relationships between different spongiform encephalopathies. However, a better understanding of the molecular features associated with the specific pathogenic behavior of different strains is required. Complex relationships between the infectious agents involved in spongiform encephalopathies and the disease host can make the recognition of a link between animal prion strains and the human disease difficult to establish.","PeriodicalId":14858,"journal":{"name":"JNEN: Journal of Neuropathology & Experimental Neurology","volume":"18 1","pages":"377–383"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNEN: Journal of Neuropathology & Experimental Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JNEN/61.5.377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The concern of the potential transmission of animal spongiform encephalopathies to humans, which arose as soon as the interspecies transmission of these diseases was recognized, has been reinforced with the emergence of bovine spongiform encephalopathy (BSE) in cattle. Recent experimental findings suggest that the infectious agent causing BSE in cattle can lead to the occurrence of a new form of Creutzfeldt-Jakob disease in humans. These findings help us understand how the transmission to humans of an animal disease may be recognized. This can involve an indirect approach through the analysis of neurodegeneration, either in the disease host, or more specifically, in genetically well-defined experimental hosts to which the disease can be transmitted. Recent experimental studies have also shown that the different molecular features of the abnormal form of the prion protein, which accumulates in the infected tissues, can provide important clues to the relationships between different spongiform encephalopathies. However, a better understanding of the molecular features associated with the specific pathogenic behavior of different strains is required. Complex relationships between the infectious agents involved in spongiform encephalopathies and the disease host can make the recognition of a link between animal prion strains and the human disease difficult to establish.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
朊病毒种间传播的鉴定
一旦认识到动物海绵状脑病的种间传播,就会出现对动物海绵状脑病可能传播给人类的担忧,随着牛海绵状脑病(BSE)的出现,这种担忧得到了加强。最近的实验结果表明,在牛中引起疯牛病的传染因子可导致人类发生一种新形式的克雅氏病。这些发现有助于我们了解如何识别动物疾病向人类的传播。这可能涉及通过分析神经退行性变的间接方法,无论是在疾病宿主中,还是更具体地说,在基因明确的实验宿主中,疾病可以传播。最近的实验研究也表明,在感染组织中积累的异常形式的朊病毒蛋白的不同分子特征可以为不同海绵状脑病之间的关系提供重要线索。然而,需要更好地了解与不同菌株特定致病行为相关的分子特征。海绵状脑病所涉及的传染因子与疾病宿主之间的复杂关系,可能使识别动物朊病毒株与人类疾病之间的联系变得困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular Regulation of Acute Ethanol-Induced Neuron Apoptosis HIV-1 gp120 Proteins Alter Tight Junction Protein Expression and Brain Endothelial Cell Permeability: Implications for the Pathogenesis of HIV-Associated Dementia Neuronal Intranuclear Inclusion Disease Without Polyglutamine Inclusions in a Child Autophagic Vacuoles with Sarcolemmal Features Delineate Danon Disease and Related Myopathies INI1 Protein Expression Distinguishes Atypical Teratoid/Rhabdoid Tumor from Choroid Plexus Carcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1