Multicaloric effects in metamagnetic Heusler Ni-Mn-In under uniaxial stress and magnetic field

A. Gràcia-Condal, T. Gottschall, L. Pfeuffer, O. Gutfleisch, A. Planes, L. Mañosa
{"title":"Multicaloric effects in metamagnetic Heusler Ni-Mn-In under uniaxial stress and magnetic field","authors":"A. Gràcia-Condal, T. Gottschall, L. Pfeuffer, O. Gutfleisch, A. Planes, L. Mañosa","doi":"10.1063/5.0020755","DOIUrl":null,"url":null,"abstract":"The world's growing hunger for artificial cold on the one hand, and the ever more stringent climate targets on the other, pose an enormous challenge to mankind. Novel, efficient and environmentally friendly refrigeration technologies based on solid-state refrigerants can offer a way out of the problems arising from climate-damaging substances used in conventional vapor-compressors. Multicaloric materials stand out because of their large temperature changes which can be induced by the application of different external stimuli such as a magnetic, electric, or a mechanical field. Despite the high potential for applications and the interesting physics of this group of materials, only few studies focus on their investigation by direct methods. In this paper, we report on the advanced characterization of all relevant physical quantities that determine the multicaloric effect of a Ni-Mn-In Heusler compound. We have used a purpose-designed calorimeter to determine the isothermal entropy and adiabatic temperature changes resulting from the combined action of magnetic field and uniaxial stress on this metamagnetic shape-memory alloy. From these results, we can conclude that the multicaloric response of this alloy by appropriate changes of uniaxial stress and magnetic field largely outperforms the caloric response of the alloy when subjected to only a single stimulus. We anticipate that our findings can be applied to other multicaloric materials, thus inspiring the development of refrigeration devices based on the multicaloric effect.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0020755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The world's growing hunger for artificial cold on the one hand, and the ever more stringent climate targets on the other, pose an enormous challenge to mankind. Novel, efficient and environmentally friendly refrigeration technologies based on solid-state refrigerants can offer a way out of the problems arising from climate-damaging substances used in conventional vapor-compressors. Multicaloric materials stand out because of their large temperature changes which can be induced by the application of different external stimuli such as a magnetic, electric, or a mechanical field. Despite the high potential for applications and the interesting physics of this group of materials, only few studies focus on their investigation by direct methods. In this paper, we report on the advanced characterization of all relevant physical quantities that determine the multicaloric effect of a Ni-Mn-In Heusler compound. We have used a purpose-designed calorimeter to determine the isothermal entropy and adiabatic temperature changes resulting from the combined action of magnetic field and uniaxial stress on this metamagnetic shape-memory alloy. From these results, we can conclude that the multicaloric response of this alloy by appropriate changes of uniaxial stress and magnetic field largely outperforms the caloric response of the alloy when subjected to only a single stimulus. We anticipate that our findings can be applied to other multicaloric materials, thus inspiring the development of refrigeration devices based on the multicaloric effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在单轴应力和磁场作用下,变磁性Heusler Ni-Mn-In中的多热效应
一方面,世界对人工冷的需求日益增长,另一方面,气候目标越来越严格,这对人类构成了巨大的挑战。基于固态制冷剂的新型、高效和环保制冷技术可以解决传统蒸汽压缩机中使用的破坏气候的物质所带来的问题。多色材料之所以引人注目,是因为它们的温度变化很大,这种变化可以由不同的外部刺激(如磁场、电场或机械场)引起。尽管这类材料具有很高的应用潜力和有趣的物理性质,但很少有研究关注于直接方法的研究。在本文中,我们报告了决定Ni-Mn-In Heusler化合物多色效应的所有相关物理量的高级表征。我们用专门设计的量热计测定了在磁场和单轴应力共同作用下,这种超磁形状记忆合金的等温熵和绝热温度变化。通过这些结果,我们可以得出结论,适当改变单轴应力和磁场的合金的多色响应在很大程度上优于仅受单一刺激时合金的热响应。我们期望我们的发现可以应用于其他多色材料,从而启发基于多色效应的制冷装置的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A pathway towards high throughput Quantum Monte Carlo simulations for alloys: A case study of two-dimensional (2D) GaSₓSe₁₋ₓ Data analytics accelerates the experimental discovery of new thermoelectric materials with extremely high figure of merit Thermal laser evaporation of elements from across the periodic table Perpendicular magnetic anisotropy in ultra-thin Cu2Sb-type (Mn–Cr)AlGe films fabricated onto thermally oxidized silicon substrates The Mesoscale Crystallinity of Nacreous Pearls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1