{"title":"Multi-Feature Fusion Based Approach for Classifying Encrypted Mobile Application Traffic","authors":"Qingya Yang, Peipei Fu, Junzheng Shi, Bingxu Wang, Zhuguo Li, G. Xiong","doi":"10.1109/CSCWD57460.2023.10152687","DOIUrl":null,"url":null,"abstract":"With rapid development of mobile Internet, a great number of mobile applications has emerged, presenting a great explosion in mobile Internet traffic. Therefore, accurate classification of application traffic is necessary to more effectively manage mobile Internet traffic. However, the encryption of mobile application traffic gradually eliminates traditional classification approaches based on specific signatures, greatly increasing the difficulty of the classification of mobile application traffic. Therefore, we propose a novel multi-feature fusion (MFF)- based approach to enhance the accuracy of mobile application traffic classification. We also extract packet length sequence, byte sequence, statistical feature, etc. Then, we perform weighted fusions of features based on Relief-F algorithm to achieve the best set of features. Finally, we use machine learning techniques for application classification. Compared to several other feature extraction methods, MFF achieves an excellent performance with an accuracy of 97.6% for 16 mobile applications and a F1-score of over 99% for VPN-nonVPN.","PeriodicalId":51008,"journal":{"name":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","volume":"2004 1","pages":"1112-1117"},"PeriodicalIF":2.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Cooperative Work-The Journal of Collaborative Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCWD57460.2023.10152687","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With rapid development of mobile Internet, a great number of mobile applications has emerged, presenting a great explosion in mobile Internet traffic. Therefore, accurate classification of application traffic is necessary to more effectively manage mobile Internet traffic. However, the encryption of mobile application traffic gradually eliminates traditional classification approaches based on specific signatures, greatly increasing the difficulty of the classification of mobile application traffic. Therefore, we propose a novel multi-feature fusion (MFF)- based approach to enhance the accuracy of mobile application traffic classification. We also extract packet length sequence, byte sequence, statistical feature, etc. Then, we perform weighted fusions of features based on Relief-F algorithm to achieve the best set of features. Finally, we use machine learning techniques for application classification. Compared to several other feature extraction methods, MFF achieves an excellent performance with an accuracy of 97.6% for 16 mobile applications and a F1-score of over 99% for VPN-nonVPN.
期刊介绍:
Computer Supported Cooperative Work (CSCW): The Journal of Collaborative Computing and Work Practices is devoted to innovative research in computer-supported cooperative work (CSCW). It provides an interdisciplinary and international forum for the debate and exchange of ideas concerning theoretical, practical, technical, and social issues in CSCW.
The CSCW Journal arose in response to the growing interest in the design, implementation and use of technical systems (including computing, information, and communications technologies) which support people working cooperatively, and its scope remains to encompass the multifarious aspects of research within CSCW and related areas.
The CSCW Journal focuses on research oriented towards the development of collaborative computing technologies on the basis of studies of actual cooperative work practices (where ‘work’ is used in the wider sense). That is, it welcomes in particular submissions that (a) report on findings from ethnographic or similar kinds of in-depth fieldwork of work practices with a view to their technological implications, (b) report on empirical evaluations of the use of extant or novel technical solutions under real-world conditions, and/or (c) develop technical or conceptual frameworks for practice-oriented computing research based on previous fieldwork and evaluations.