Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Systems Pub Date : 2023-01-01 DOI:10.1515/jisys-2022-0155
Firas Mohammed Aswad, Ali Ahmed, N. A. M. Alhammadi, Bashar Ahmad Khalaf, S. Mostafa
{"title":"Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks","authors":"Firas Mohammed Aswad, Ali Ahmed, N. A. M. Alhammadi, Bashar Ahmad Khalaf, S. Mostafa","doi":"10.1515/jisys-2022-0155","DOIUrl":null,"url":null,"abstract":"Abstract With the rapid growth of informatics systems’ technology in this modern age, the Internet of Things (IoT) has become more valuable and vital to everyday life in many ways. IoT applications are now more popular than they used to be due to the availability of many gadgets that work as IoT enablers, including smartwatches, smartphones, security cameras, and smart sensors. However, the insecure nature of IoT devices has led to several difficulties, one of which is distributed denial-of-service (DDoS) attacks. IoT systems have several security limitations due to their disreputability characteristics, like dynamic communication between IoT devices. The dynamic communications resulted from the limited resources of these devices, such as their data storage and processing units. Recently, many attempts have been made to develop intelligent models to protect IoT networks against DDoS attacks. The main ongoing research issue is developing a model capable of protecting the network from DDoS attacks that is sensitive to various classes of DDoS and can recognize legitimate traffic to avoid false alarms. Subsequently, this study proposes combining three deep learning algorithms, namely recurrent neural network (RNN), long short-term memory (LSTM)-RNN, and convolutional neural network (CNN), to build a bidirectional CNN-BiLSTM DDoS detection model. The RNN, CNN, LSTM, and CNN-BiLSTM are implemented and tested to determine the most effective model against DDoS attacks that can accurately detect and distinguish DDoS from legitimate traffic. The intrusion detection evaluation dataset (CICIDS2017) is used to provide more realistic detection. The CICIDS2017 dataset includes benign and up-to-date examples of typical attacks, closely matching real-world data of Packet Capture. The four models are tested and assessed using Confusion Metrix against four commonly used criteria: accuracy, precision, recall, and F-measure. The performance of the models is quite effective as they obtain an accuracy rate of around 99.00%, except for the CNN model, which achieves an accuracy of 98.82%. The CNN-BiLSTM achieves the best accuracy of 99.76% and precision of 98.90%.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract With the rapid growth of informatics systems’ technology in this modern age, the Internet of Things (IoT) has become more valuable and vital to everyday life in many ways. IoT applications are now more popular than they used to be due to the availability of many gadgets that work as IoT enablers, including smartwatches, smartphones, security cameras, and smart sensors. However, the insecure nature of IoT devices has led to several difficulties, one of which is distributed denial-of-service (DDoS) attacks. IoT systems have several security limitations due to their disreputability characteristics, like dynamic communication between IoT devices. The dynamic communications resulted from the limited resources of these devices, such as their data storage and processing units. Recently, many attempts have been made to develop intelligent models to protect IoT networks against DDoS attacks. The main ongoing research issue is developing a model capable of protecting the network from DDoS attacks that is sensitive to various classes of DDoS and can recognize legitimate traffic to avoid false alarms. Subsequently, this study proposes combining three deep learning algorithms, namely recurrent neural network (RNN), long short-term memory (LSTM)-RNN, and convolutional neural network (CNN), to build a bidirectional CNN-BiLSTM DDoS detection model. The RNN, CNN, LSTM, and CNN-BiLSTM are implemented and tested to determine the most effective model against DDoS attacks that can accurately detect and distinguish DDoS from legitimate traffic. The intrusion detection evaluation dataset (CICIDS2017) is used to provide more realistic detection. The CICIDS2017 dataset includes benign and up-to-date examples of typical attacks, closely matching real-world data of Packet Capture. The four models are tested and assessed using Confusion Metrix against four commonly used criteria: accuracy, precision, recall, and F-measure. The performance of the models is quite effective as they obtain an accuracy rate of around 99.00%, except for the CNN model, which achieves an accuracy of 98.82%. The CNN-BiLSTM achieves the best accuracy of 99.76% and precision of 98.90%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网网络分布式拒绝服务攻击检测方法中的深度学习
随着现代信息系统技术的快速发展,物联网(IoT)在许多方面对人们的日常生活变得越来越有价值和重要。物联网应用现在比以前更受欢迎,这是由于许多可以作为物联网推动者的小工具的可用性,包括智能手表、智能手机、安全摄像头和智能传感器。然而,物联网设备的不安全特性导致了一些困难,其中之一是分布式拒绝服务(DDoS)攻击。物联网系统由于其不声誉特性(如物联网设备之间的动态通信)而存在一些安全限制。动态通信是由于这些设备有限的资源造成的,例如它们的数据存储和处理单元。最近,人们尝试开发智能模型来保护物联网网络免受DDoS攻击。目前正在进行的主要研究问题是开发一种能够保护网络免受DDoS攻击的模型,该模型对各种类型的DDoS很敏感,并且可以识别合法流量以避免误报。随后,本研究提出结合递归神经网络(RNN)、长短期记忆(LSTM)-RNN和卷积神经网络(CNN)三种深度学习算法,构建双向CNN- bilstm DDoS检测模型。通过对RNN、CNN、LSTM、CNN- bilstm的实现和测试,确定最有效的DDoS攻击模型,能够准确地检测和区分DDoS和合法流量。使用入侵检测评估数据集(CICIDS2017)提供更真实的检测。CICIDS2017数据集包括良性和最新的典型攻击示例,与数据包捕获的真实数据密切匹配。使用混淆矩阵对四个常用标准进行测试和评估:准确性、精度、召回率和F-measure。除了CNN模型的准确率为98.82%外,其他模型的性能都非常有效,准确率在99.00%左右。CNN-BiLSTM的准确率为99.76%,精密度为98.90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
期刊最新文献
Periodic analysis of scenic spot passenger flow based on combination neural network prediction model Research on the construction and reform path of online and offline mixed English teaching model in the internet era Online English writing teaching method that enhances teacher–student interaction Neural network big data fusion in remote sensing image processing technology Improved rapidly exploring random tree using salp swarm algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1