Deep Learning Assist IoT Search Engine for Disaster Damage Assessment

Q2 Engineering Cyber-Physical Systems Pub Date : 2022-03-12 DOI:10.1080/23335777.2022.2051210
Hengshuo Liang, Lauren Burgess, Weixian Liao, Erik Blasch, Wei Yu
{"title":"Deep Learning Assist IoT Search Engine for Disaster Damage Assessment","authors":"Hengshuo Liang, Lauren Burgess, Weixian Liao, Erik Blasch, Wei Yu","doi":"10.1080/23335777.2022.2051210","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we address the issue of disaster damage assessments using deep learning (DL) techniques. Specifically, we propose integrating DL techniques into the Internet of Things Search Engine (IoTSE) system to carry out disaster damage assessment. Our approach is to design two scenarios, Single and Complex Event Settings, to complete performance validation using four Convolutional Neural Network (CNN) models. These two scenarios are designed with three possible network services. Our experimental results confirm that all four CNN models can learn each label during the single event setting well. Whereas, with complex event settings, the CNN models have learning difficulty because multiple events have closely related labels.","PeriodicalId":37058,"journal":{"name":"Cyber-Physical Systems","volume":"19 1","pages":"313 - 337"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335777.2022.2051210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT In this paper, we address the issue of disaster damage assessments using deep learning (DL) techniques. Specifically, we propose integrating DL techniques into the Internet of Things Search Engine (IoTSE) system to carry out disaster damage assessment. Our approach is to design two scenarios, Single and Complex Event Settings, to complete performance validation using four Convolutional Neural Network (CNN) models. These two scenarios are designed with three possible network services. Our experimental results confirm that all four CNN models can learn each label during the single event setting well. Whereas, with complex event settings, the CNN models have learning difficulty because multiple events have closely related labels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习协助物联网搜索引擎进行灾害损失评估
在本文中,我们使用深度学习(DL)技术解决了灾害损害评估问题。具体而言,我们建议将深度学习技术集成到物联网搜索引擎(IoTSE)系统中,以进行灾害损害评估。我们的方法是设计两种场景,单一事件设置和复杂事件设置,使用四种卷积神经网络(CNN)模型完成性能验证。这两个场景设计了三种可能的网络服务。我们的实验结果证实,这四种CNN模型都可以很好地学习单个事件设置中的每个标签。然而,在复杂事件设置下,CNN模型存在学习困难,因为多个事件具有密切相关的标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cyber-Physical Systems
Cyber-Physical Systems Engineering-Computational Mechanics
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
System-level operational cyber risks identification in industrial control systems Multicore embedded sensing system based on lightweight neural network Model-based framework for exploiting sensors of IoT devices using a botnet: a case study with android A new target accessibility control method based on SMC CyberGrid: an IEC61850 protocol-based substation automation virtual cyber range for cybersecurity research in the smart grid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1