TWOFOLD FACE DETECTION APPROACH IN GENDER CLASSIFICATION USING DEEP LEARNING

Muhammad Firdaus B. Mustapha, Nur Maisarah Mohamad, Siti Haslini Ab Hamid
{"title":"TWOFOLD FACE DETECTION APPROACH IN GENDER CLASSIFICATION USING DEEP LEARNING","authors":"Muhammad Firdaus B. Mustapha, Nur Maisarah Mohamad, Siti Haslini Ab Hamid","doi":"10.15282/ijsecs.9.1.2023.6.0110","DOIUrl":null,"url":null,"abstract":"Face classification is a challenging task that is crucial to numerous applications. There are many algorithms for classifying gender, but their ability to evaluate their effectiveness regarding scientific data is constrained. Deep learning is popular among researchers in face classification problems. The detection of many faces is complicated and becomes a necessity in real problems. The proposed research aims to examine the effect of twofold face detection approach on the accuracy of gender classification, as well as the effect of using small datasets on accuracy. In this study, we use a small dataset to classify facial images based on their gender. The following phases involve deep learning methods along with the OpenCV library version 3.4.2 which is recommended to serve as a twofold face detection approach. In the experiments conducted, Phase 1 is the designated training phase, and Phase 2 serves as a testing phase. Two different algorithms are used in the testing phase to detect one face in the image (Experiment 1), while the remaining algorithm detects multiple faces in the image (Experiment 2). The FEI dataset is used to evaluate the accuracy of the proposed research, which results in 84% accuracy for Experiment 2 and 74% for Experiment 1, respectively.","PeriodicalId":31240,"journal":{"name":"International Journal of Software Engineering and Computer Systems","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Engineering and Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijsecs.9.1.2023.6.0110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Face classification is a challenging task that is crucial to numerous applications. There are many algorithms for classifying gender, but their ability to evaluate their effectiveness regarding scientific data is constrained. Deep learning is popular among researchers in face classification problems. The detection of many faces is complicated and becomes a necessity in real problems. The proposed research aims to examine the effect of twofold face detection approach on the accuracy of gender classification, as well as the effect of using small datasets on accuracy. In this study, we use a small dataset to classify facial images based on their gender. The following phases involve deep learning methods along with the OpenCV library version 3.4.2 which is recommended to serve as a twofold face detection approach. In the experiments conducted, Phase 1 is the designated training phase, and Phase 2 serves as a testing phase. Two different algorithms are used in the testing phase to detect one face in the image (Experiment 1), while the remaining algorithm detects multiple faces in the image (Experiment 2). The FEI dataset is used to evaluate the accuracy of the proposed research, which results in 84% accuracy for Experiment 2 and 74% for Experiment 1, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的性别分类双人脸检测方法
人脸分类是一项具有挑战性的任务,对许多应用程序都至关重要。有许多分类性别的算法,但它们评估其在科学数据方面的有效性的能力受到限制。深度学习是人脸分类问题研究的热点。人脸检测是一个复杂的问题,在实际问题中是必须的。本研究旨在检验双重人脸检测方法对性别分类准确率的影响,以及使用小数据集对准确率的影响。在这项研究中,我们使用一个小的数据集来根据性别对面部图像进行分类。以下阶段涉及深度学习方法以及OpenCV库版本3.4.2,建议作为双重人脸检测方法。在进行的实验中,第一阶段是指定的训练阶段,第二阶段是测试阶段。在测试阶段使用了两种不同的算法来检测图像中的一张人脸(实验1),而剩下的算法则检测图像中的多张人脸(实验2)。使用FEI数据集来评估所提出研究的准确性,实验2和实验1的准确率分别为84%和74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
14
期刊最新文献
The Mobile Augmented Reality Application for Improving Learning of Electronic Component Module in TVET A Systematic Mapping on Android-based Platform for Smart Inventory System Sentiment Classification of Tweets with Explicit Word Negations and Emoji Using Deep Learning Protocol Efficiency Using Multiple Level Encoding in Quantum Secure Direct Communication Protocol SECURING IOT HEALTHCARE APPLICATIONS AND BLOCKCHAIN: ADDRESSING SECURITY ATTACKS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1