Motion Trajectory Error of Robotic Arm Based on Neural Network Algorithm

IF 1 Q4 AUTOMATION & CONTROL SYSTEMS Journal of Control Science and Engineering Pub Date : 2023-04-04 DOI:10.1155/2023/3958434
B. Xu, Chen Sem-Lin
{"title":"Motion Trajectory Error of Robotic Arm Based on Neural Network Algorithm","authors":"B. Xu, Chen Sem-Lin","doi":"10.1155/2023/3958434","DOIUrl":null,"url":null,"abstract":"In order to solve the problems of unstable motion and large trajectory tracking error of the manipulator when it is disturbed by the outside world, the author proposes an adaptive neural network manipulator motion trajectory error method. The author gives the dynamic equation of the manipulator and uses the positive feedback neural network to study the dynamic characteristics of the manipulator. An adaptive neural network control system is designed, and the stability and convergence of the closed-loop system are proved by the Lyapunov function. A schematic diagram of the manipulator model is established, and MATLAB/Simulink software is used to simulate the dynamic parameters of the manipulator. At the same time, it is compared and analyzed with the simulation results of the PID control system. Simulation results show that in robot arm 3, the expected motion trajectory is θ3 = 0.4cos(2πt), the initial condition θ(0) = [000]τ, the control parameter K = diag(40,40),40), the disturbance parameter τ’ = 20cos(πt), robot arm link parameters l1 = 0.62 m, l2 = 0.41 m, l3 = 0.34 m, m1 = 3.5, m2 = 2.5 kg, m3 = 2 kg, g = 9.82 m/s2, under t = 2s, the motion trajectory of the robotic arm is disturbed by the outside world, and the adaptive neural network is used to control the motion trajectory with a small tracking error, input torque ripple is small. Conclusion. The manipulator adopts the adaptive neural network control method, which can improve the control accuracy of the motion trajectory and weaken the jitter phenomenon of the manipulator motion.","PeriodicalId":46052,"journal":{"name":"Journal of Control Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Control Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3958434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

In order to solve the problems of unstable motion and large trajectory tracking error of the manipulator when it is disturbed by the outside world, the author proposes an adaptive neural network manipulator motion trajectory error method. The author gives the dynamic equation of the manipulator and uses the positive feedback neural network to study the dynamic characteristics of the manipulator. An adaptive neural network control system is designed, and the stability and convergence of the closed-loop system are proved by the Lyapunov function. A schematic diagram of the manipulator model is established, and MATLAB/Simulink software is used to simulate the dynamic parameters of the manipulator. At the same time, it is compared and analyzed with the simulation results of the PID control system. Simulation results show that in robot arm 3, the expected motion trajectory is θ3 = 0.4cos(2πt), the initial condition θ(0) = [000]τ, the control parameter K = diag(40,40),40), the disturbance parameter τ’ = 20cos(πt), robot arm link parameters l1 = 0.62 m, l2 = 0.41 m, l3 = 0.34 m, m1 = 3.5, m2 = 2.5 kg, m3 = 2 kg, g = 9.82 m/s2, under t = 2s, the motion trajectory of the robotic arm is disturbed by the outside world, and the adaptive neural network is used to control the motion trajectory with a small tracking error, input torque ripple is small. Conclusion. The manipulator adopts the adaptive neural network control method, which can improve the control accuracy of the motion trajectory and weaken the jitter phenomenon of the manipulator motion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络算法的机械臂运动轨迹误差
为了解决机械手受外界干扰时运动不稳定和轨迹跟踪误差大的问题,提出了一种自适应神经网络机械手运动轨迹误差方法。给出了机械手的动力学方程,并利用正反馈神经网络对机械手的动力学特性进行了研究。设计了自适应神经网络控制系统,并用李雅普诺夫函数证明了闭环系统的稳定性和收敛性。建立了机械手模型的原理图,利用MATLAB/Simulink软件对机械手的动态参数进行了仿真。同时,与PID控制系统的仿真结果进行了对比分析。仿真结果表明,在机械臂3中,预期的运动轨迹是θ3 = 0.4 cos(2πt),初始条件θ(0)=[000]τ,控制参数K =诊断接头(40、40),40),扰动参数τ= 20 cos(πt),机器人手臂链接参数l1 = 0.62 m, l2 = 0.41 m, l3 = 0.34 m, m1 = 3.5平方米= 2.5公斤,m3 = 2公斤,g = 9.82米/ s2,在t = 2 s,机械臂的运动轨迹由外界干扰,采用自适应神经网络控制运动轨迹,跟踪误差小,输入转矩脉动小。结论。该机械手采用自适应神经网络控制方法,提高了运动轨迹的控制精度,减弱了机械手运动的抖动现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Control Science and Engineering
Journal of Control Science and Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
4.70
自引率
0.00%
发文量
54
审稿时长
19 weeks
期刊介绍: Journal of Control Science and Engineering is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of control science and engineering.
期刊最新文献
An Accelerated Fixed-Point Algorithm Applied to Quadratic Convex Separable Knapsack Problems An Accelerated Fixed-Point Algorithm Applied to Quadratic Convex Separable Knapsack Problems Retracted: Research on Nonlinear Time Series Processing Method for Automatic Building Construction Management Retracted: Design and Discussion on Information Management and Control System of Agricultural Machinery and Equipment Retracted: Robot Fault Detection Based on Big Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1