{"title":"A Novel Completion-Time-Minimization Scheduling Approach of Scientific Workflows Over Heterogeneous Cloud Computing Systems","authors":"S. Bukhari, Yunni Xia","doi":"10.4018/ijwsr.2019100101","DOIUrl":null,"url":null,"abstract":"The cloud computing paradigm provides an ideal platform for supporting large-scale scientific-workflow-based applications over the internet. However, the scheduling and execution of scientific workflows still face various challenges such as cost and response time management, which aim at handling acquisition delays of physical servers and minimizing the overall completion time of workflows. A careful investigation into existing methods shows that most existing approaches consider static performance of physical machines (PMs) and ignore the impact of resource acquisition delays in their scheduling models. In this article, the authors present a meta-heuristic-based method to scheduling scientific workflows aiming at reducing workflow completion time through appropriately managing acquisition and transmission delays required for inter-PM communications. The authors carry out extensive case studies as well based on real-world commercial cloud sand multiple workflow templates. Experimental results clearly show that the proposed method outperforms the state-of-art ones such as ICPCP, CEGA, and JIT-C in terms of workflow completion time.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"1 1","pages":"1-20"},"PeriodicalIF":0.8000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.2019100101","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
The cloud computing paradigm provides an ideal platform for supporting large-scale scientific-workflow-based applications over the internet. However, the scheduling and execution of scientific workflows still face various challenges such as cost and response time management, which aim at handling acquisition delays of physical servers and minimizing the overall completion time of workflows. A careful investigation into existing methods shows that most existing approaches consider static performance of physical machines (PMs) and ignore the impact of resource acquisition delays in their scheduling models. In this article, the authors present a meta-heuristic-based method to scheduling scientific workflows aiming at reducing workflow completion time through appropriately managing acquisition and transmission delays required for inter-PM communications. The authors carry out extensive case studies as well based on real-world commercial cloud sand multiple workflow templates. Experimental results clearly show that the proposed method outperforms the state-of-art ones such as ICPCP, CEGA, and JIT-C in terms of workflow completion time.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.