Robust Discriminative Non-Negative Matrix Factorization with Maximum Correntropy Criterion

Hang Cheng, Shixiong Wang, Naiyang Guan
{"title":"Robust Discriminative Non-Negative Matrix Factorization with Maximum Correntropy Criterion","authors":"Hang Cheng, Shixiong Wang, Naiyang Guan","doi":"10.5121/csit.2022.121804","DOIUrl":null,"url":null,"abstract":"Non-negative matrix factorization (NMF) is an effective dimension reduction tool widely used in pattern recognition and computer vision. However, conventional NMF models are neither robust enough, as their objective functions are sensitive to outliers, nor discriminative enough, as they completely ignore the discriminative information in data. In this paper, we proposed a robust discriminative NMF model (RDNMF) for learning an effective discriminative subspace from noisy dataset. In particular, RDNMF approximates observations by their reconstructions in the subspace via maximum correntropy criterion to prohibit outliers from influencing the subspace. To incorporate the discriminative information, RDNMF builds adjacent graphs by using maximum correntropy criterion based robust representation, and regularizes the model by margin maximization criterion. We developed a multiplicative update rule to optimize RDNMF and theoretically proved its convergence. Experimental results on popular datasets verify the effectiveness of RDNMF comparing with conventional NMF models, discriminative NMF models, and robust NMF models.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.121804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-negative matrix factorization (NMF) is an effective dimension reduction tool widely used in pattern recognition and computer vision. However, conventional NMF models are neither robust enough, as their objective functions are sensitive to outliers, nor discriminative enough, as they completely ignore the discriminative information in data. In this paper, we proposed a robust discriminative NMF model (RDNMF) for learning an effective discriminative subspace from noisy dataset. In particular, RDNMF approximates observations by their reconstructions in the subspace via maximum correntropy criterion to prohibit outliers from influencing the subspace. To incorporate the discriminative information, RDNMF builds adjacent graphs by using maximum correntropy criterion based robust representation, and regularizes the model by margin maximization criterion. We developed a multiplicative update rule to optimize RDNMF and theoretically proved its convergence. Experimental results on popular datasets verify the effectiveness of RDNMF comparing with conventional NMF models, discriminative NMF models, and robust NMF models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大熵准则的鲁棒判别非负矩阵分解
非负矩阵分解(NMF)是一种有效的降维工具,广泛应用于模式识别和计算机视觉。然而,传统的NMF模型鲁棒性不够强,因为其目标函数对异常值敏感,而判别性也不够强,因为它们完全忽略了数据中的判别信息。本文提出了一种鲁棒判别NMF模型(RDNMF),用于从噪声数据集中学习有效的判别子空间。特别是,RDNMF通过最大熵准则在子空间中的重建来近似观测值,以禁止异常值影响子空间。为了融合判别信息,RDNMF采用基于最大相关系数准则的鲁棒表示构建相邻图,并采用边界最大化准则对模型进行正则化。提出了一种优化RDNMF的乘法更新规则,并从理论上证明了其收敛性。在常用数据集上的实验结果验证了RDNMF与传统NMF模型、判别NMF模型和鲁棒NMF模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methodology of Measurement Intellectualization based on Regularized Bayesian Approach in Uncertain Conditions Stochastic Dual Coordinate Ascent for Learning Sign Constrained Linear Predictors Data Smoothing Filling Method based on ScRNA-Seq Data Zero-Value Identification Batch-Stochastic Sub-Gradient Method for Solving Non-Smooth Convex Loss Function Problems Teaching Reading Skills More Effectively
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1